Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
huangk77 authored Oct 21, 2024
1 parent 445a3de commit fed861a
Show file tree
Hide file tree
Showing 2 changed files with 340 additions and 0 deletions.
119 changes: 119 additions & 0 deletions pose_generate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
import numpy as np
import os
import open3d as o3d
def get_random_rotations(num):
"""
Get random rotations
:return: random rotations
"""
m = 13 * num
x0 = np.random.rand(m, 1)
x1 = np.random.rand(m, 1)
x2 = np.random.rand(m, 1)
theta1 = 2 * np.pi * x1
theta2 = 2 * np.pi * x2

s1 = np.sin(theta1)
s2 = np.sin(theta2)
c1 = np.cos(theta1)
c2 = np.cos(theta2)

r1 = np.sqrt(1-x0)
r2 = np.sqrt(x0)

# quats = [np.dot(np.array([r1[i], r2[i]*s1[i], r2[i]*c1[i], 0]), np.array([r1[i], r2[i]*s2[i], r2[i]*c2[i], 0])) for i in range(m)]
quats = np.array([s1*r1, c1*r1, s2*r2, c2*r2])
quats = np.resize(quats, (4,m)).transpose()
return quats

def generate_random_translations(focal_length, sensor_size, target_size, roi_size, num):
"""
Generate random translations
:param focal_length: focal length of the camera
:param sensor_size: sensor size of the camera
:param roi_size: roi size of the target in camera coordinate system
:return: random translations
"""
m = 13 * num
sensor_mean_size = np.mean(sensor_size)
roi_mean_size = np.mean(roi_size) * sensor_mean_size

z0 = target_size * focal_length / roi_mean_size
z = np.random.normal(z0, 30, 1000)
z_select = z[(z>30) & (z<35)]
z_final = np.random.choice(z_select, m)

z_array = np.zeros((len(z_final), 3, 1))
z_array[:,2,:] = z_final.reshape((len(z_final), 1))

alpha0 = np.arctan(sensor_size[0]/2 / focal_length)
alpha = np.random.normal(0, alpha0, 1000)
alpha_select = alpha[(alpha>-alpha0/2) & (alpha<alpha0/2)]
alpha_final = np.random.choice(alpha_select, m)
alpha_array = np.zeros((len(alpha_final), 3, 3))
alpha_array[:,0,0] = np.cos(alpha_final)
alpha_array[:,0,2] = -np.sin(alpha_final)
alpha_array[:,1,1] = 1
alpha_array[:,2,0] = np.sin(alpha_final)
alpha_array[:,2,2] = np.cos(alpha_final)

beta0 = np.arctan(sensor_size[1]/2 / focal_length)
beta = np.random.normal(0, beta0, 1000)
beta_select = beta[(beta>-beta0/2) & (beta<beta0/2)]
beta_final = np.random.choice(beta_select, m)
beta_array = np.zeros((len(beta_final), 3, 3))
beta_array[:,0,0] = 1
beta_array[:,1,1] = np.cos(beta_final)
beta_array[:,1,2] = np.sin(beta_final)
beta_array[:,2,1] = -np.sin(beta_final)
beta_array[:,2,2] = np.cos(beta_final)

trans = np.matmul(np.matmul(alpha_array, beta_array), z_array)
trans = trans.squeeze(2)

return trans

def quaternion_multiply(q1,q2):
"""
Multiply two quaternions
:param q1: quaternion 1
:param q2: quaternion 2
:return: result of multiplication
"""
w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
w = w1*w2 - x1*x2 - y1*y2 - z1*z2
x = w1*x2 + x1*w2 + y1*z2 - z1*y2
y = w1*y2 - x1*z2 + y1*w2 + z1*x2
z = w1*z2 + x1*y2 - y1*x2 + z1*w2
return np.array([w, x, y, z])

def quaternion_rotate_vector(q, v):
"""
Rotate a vector by a quaternion
:param q: quaternion
:param v: vector
:return: rotated vector
"""
vec_quat = np.append(0,v)
v_rotation = np.zeros((len(q), 3))
q_inv = np.array([q[:,0], -q[:,1], -q[:,2], -q[:,3]]).transpose()
for i in range(len(q)):
v_rotation[i,:] = quaternion_multiply(quaternion_multiply(q[i], vec_quat), q_inv[i])[1:]

# this is to visualize the point cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(v_rotation)
o3d.visualization.draw_geometries([pcd])




if __name__ == '__main__':
num_of_each_category = 300
quats = get_random_rotations(num_of_each_category)
# this is to visualize the point cloud, which is the result of rotating the vector (1,0,0) by the quaternion
# quaternion_rotate_vector(quats, np.array([1, 0, 0]))
# 130 means the 13 classes and 10 samples for each class
trans = generate_random_translations(0.01, np.array([0.007, 0.007]), 16, np.array([0.5, 0.5]), num_of_each_category)
np.savetxt('pose_512.txt', np.hstack((quats, trans)), delimiter=',')
221 changes: 221 additions & 0 deletions process_exr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
'''
MIT License
Copyright (c) 2018 Wentao Yuan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''

import Imath
import OpenEXR
import argparse
import array
import numpy as np
import os
import open3d as o3d
import cv2
from tqdm import tqdm
from PIL import Image
import imgviz
from sklearn.neighbors import NearestNeighbors
from scipy.spatial.transform import Rotation as R

def read_exr(exr_path, height, width):
File = OpenEXR.InputFile(exr_path)
# PixType = Imath.PixelType(Imath.PixelType.FLOAT)
# DW = File.header()['dataWindow']
# Size = (height, width)
# rgb = [np.frombuffer(File.channel(c, PixType), dtype=np.float32) for c in 'RGB']
# r = np.reshape(rgb[0],(height, width))
# mytiff = np.zeros((height, width), dtype=np.float32)
# mytiff = r
depth_arr = array.array('f', File.channel('R', Imath.PixelType(Imath.PixelType.FLOAT)))
# depth_arr = array.array('f', File.channel('R', Imath.PixelType(Imath.PixelType.DOUBLE)))
depth = np.array(depth_arr).reshape((height, width))
depth[depth < 0] = 0
depth[np.isinf(depth)] = 0
depth[depth > 1000] = 0
return depth


def depth2pcd(depth, intrinsics):
# depth = np.flipud(depth)
y, x = np.where((depth > 0) & (depth < 1000))
camera_cx = intrinsics[0, 2]
camera_cy = intrinsics[1, 2]
camera_fx = intrinsics[0, 0]
camera_fy = intrinsics[1, 1]
# sensor size / pixel number
dx = 36 / (2 * camera_cx)
# dx = 7 / (2 * camera_cx)
# dy = 24 / (2 * camera_cy)
dy = dx
points_z = depth[y, x]
points_x = points_z * (x - camera_cx) * dx / camera_fx
points_y = points_z * (y - camera_cy) * dy / camera_fy
points = np.stack([points_x, points_y, points_z], axis=0)

return points

def euler_to_rotation_matrix(euler):
"""
Convert euler to rotation matrix
:param euler: euler
:return: rotation matrix
"""
r = R.from_euler('xyz', euler, degrees=False)
rotation_matrix = r.as_matrix()

return rotation_matrix

def quaternion_to_rotation_matrix(quaternion):
"""
Convert quaternion to rotation matrix
:param quaternion: quaternion
:return: rotation matrix
"""
q = quaternion
rotation_matrix = np.array([[1-2*(q[2]**2+q[3]**2), 2*(q[1]*q[2]-q[3]*q[0]), 2*(q[1]*q[3]+q[2]*q[0])],
[2*(q[1]*q[2]+q[3]*q[0]), 1-2*(q[1]**2+q[3]**2), 2*(q[2]*q[3]-q[1]*q[0])],
[2*(q[1]*q[3]-q[2]*q[0]), 2*(q[2]*q[3]+q[1]*q[0]), 1-2*(q[1]**2+q[2]**2)]])
return rotation_matrix

def depth2mask(model_dir, pose_dir, quaternion, translation, R_img, R_cam, depth, intrinsics):

model_data = np.loadtxt(model_dir, delimiter=',')
model_points = model_data[:, :3]
model_labels = model_data[:, 3]

rotation_matrix = quaternion_to_rotation_matrix(quaternion)
model_points_rotation = np.dot(rotation_matrix, model_points.T).T + translation

# depth = np.flipud(depth)
height, width = depth.shape
y, x = np.where((depth > 0) & (depth < 1000))
camera_cx = intrinsics[0, 2]
camera_cy = intrinsics[1, 2]
camera_fx = intrinsics[0, 0]
camera_fy = intrinsics[1, 1]
# sensor size / pixel number
# dx = 36 / (2 * camera_cx)
dx = 7 / (2 * camera_cx)
# dy = 24 / (2 * camera_cy)
dy = dx
points_z = depth[y, x]
points_x = points_z * (x - camera_cx) * dx / camera_fx
points_y = points_z * (y - camera_cy) * dy / camera_fy
points = np.stack([points_x, points_y, points_z], axis=0)

mask = np.zeros((height, width))
if points.size >0 :
scan_data = points.T
scan_data_img = np.dot(R_img, scan_data.T).T
scan_points_camera = np.dot(R_cam, scan_data_img.T).T

nbrs = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(model_points_rotation)
_, idx = nbrs.kneighbors(scan_points_camera)

num = points.shape[1]
scan_points_label = np.zeros(num)
scan_points_label = model_labels[idx]
mask[y, x] = scan_points_label.squeeze(1)

return mask, points


if __name__ == '__main__':
parser = argparse.ArgumentParser()
# parser.add_argument('list_file', default='')
parser.add_argument('--intrinsics_file', default="./scan_data_sim_satellite_512/intrinsics.txt")
parser.add_argument('--output_dir', default="./scan_data_sim_satellite_512/")
parser.add_argument('--model_dir', default="./available_model/label_data/")
parser.add_argument('--pose_dir', default="./pose_512.txt")
parser.add_argument('--list_file', default="./model_list.txt")
parser.add_argument('--num_scans', type=int, default=300)
args = parser.parse_args()

with open(args.list_file) as file:
model_list = file.read().splitlines()
# model_list = ['11', '23', '44']
# model_list = model_list[1:]
intrinsics = np.loadtxt(args.intrinsics_file)
width = int(intrinsics[0, 2] * 2)
height = int(intrinsics[1, 2] * 2)

pose_dir = args.pose_dir
pose_data = []
with open(os.path.join(pose_dir)) as file:
for line in file:
parts = line.strip().split(',')
txt_data = [float(p) for p in parts]
pose_data.append(txt_data)

pose_data = np.array(pose_data)
quaternions = pose_data[:, :4]
translations = pose_data[:, 4:]

euler_img = [np.pi, 0, 0]
R_img = euler_to_rotation_matrix(euler_img)
euler_cam = [np.pi, 0, 0]
R_cam = euler_to_rotation_matrix(euler_cam)
j = 0
for model_id in model_list:
depth_dir = os.path.join(args.output_dir, model_id, 'depth')
pcd_dir = os.path.join(args.output_dir, model_id, 'pcd')
mask_dir = os.path.join(args.output_dir, model_id, 'mask')
model_dir = os.path.join(args.model_dir, model_id + '.csv')
os.makedirs(depth_dir, exist_ok=True)
os.makedirs(pcd_dir, exist_ok=True)
os.makedirs(mask_dir, exist_ok=True)
print("Processing model %s" % model_id)
for i in tqdm(range(args.num_scans)):
exr_path = os.path.join(args.output_dir, model_id, 'exr', '%d.exr' % i)
# pose_path = os.path.join(args.output_dir, model_id, 'pose', '%d.txt' % i)
quaternion = quaternions[j]
translation = translations[j]

depth = read_exr(exr_path, height, width)
depth_uint32 = depth * 1000
depth_uint32[depth_uint32 > (255*255*255*255 - 1)] = 255 * 255 * 255*255 - 1
# cv2.imwrite(os.path.join(depth_dir, '%d.tiff' % i), depth_uint32.astype(np.float32)) # if depth > 65535, then uint16 return small data
# depth_read = cv2.imread(os.path.join(depth_dir, '%d.tiff' % i), cv2.IMREAD_ANYDEPTH)
# print('output:', depth_read.max())
# cv2.imshow('depth',depth_read)
# cv2.waitKey(0)
# cv2.destroyWindow()

# depth_img = o3d.geometry.Image(np.uint16(depth * 1000))
# o3d.io.write_image(os.path.join(depth_dir, '%d.png' % i), depth_img)

# pose = np.loadtxt(pose_path)
mask, points = depth2mask(model_dir, pose_dir, quaternion, translation, R_img, R_cam, depth, intrinsics)
# points = depth2pcd(depth, intrinsics)
if points.size > 0:
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points.T)
# IMPORTANT: if the point cloud is perform like our scan data, change the save format of output depth from '16' to '32
# o3d.visualization.draw_geometries([pcd])
o3d.io.write_point_cloud(os.path.join(pcd_dir, '%d.pcd' % i), pcd)
label = Image.fromarray(mask.astype(np.uint8), mode='P') # 转换为PIL的P模式
# 转换成VOC格式的P模式图像
colormap = imgviz.label_colormap()
label.putpalette(colormap.flatten())
label.save(os.path.join(mask_dir, '%d.png' % i))
j += 1

0 comments on commit fed861a

Please sign in to comment.