-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrelation.py
52 lines (45 loc) · 1.35 KB
/
correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
#df = pd.read_csv("sc2vector.csv")
#print(df.shape)
df = pd.read_csv("ts2vector.csv")
print(df.shape)
print(df.head(3))
#df = pd.read_csv("sc2tfidf.csv")
#print(df.shape)
#df = pd.read_csv("ts2tfidf.csv")
#print(df.shape)
import seaborn as sns
import matplotlib.pyplot as plt
#df = df.iloc[:, 0:11]
cp = df.corr()
#plt.figure(figsize=(12,8))
#sns.heatmap(cp, cmap="RdBu_r",annot=True)
#plt.title('Correlation between Numeric Variables')
#plt.show()
import numpy as np
nmax = -np.inf # Dimulai dengan nilai terendah yang mungkin
nmin= np.inf # Dimulai dengan nilai tertinggi yang mungkin
maxim = set()
minim = set()
rmax = 0
rmin = 0
for i, row in enumerate(cp.index):
col = "label"
if (row!=col):
nilai_korelasi = cp.loc[row, col]
if nilai_korelasi > nmax:
nmax = nilai_korelasi
maxim = {(row, col)}
rmax = row
elif nilai_korelasi == nmax:
maxim.add((row, col))
if nilai_korelasi < nmin:
nmin = nilai_korelasi
minim = {(row, col)}
rmin = row
elif nilai_korelasi == nmin:
minim.add((row, col))
# Cetak hasil
print(f"Nilai korelasi tertinggi: {nmax}, Pasangan: {maxim}")
print(f"Nilai korelasi terendah: {nmin}, Pasangan: {minim}")
#print(df["tv_intliteral"])