Collection of some analytical bond order potentials ( listed in the LAMMPS format) from literature.
Tersoff_1 in LAMMPS | Analytical bond-order potential (ABOP) |
---|---|
$$f_\mathrm{C}(r)=\left{\begin{array}{ll}1, & r <R-D \\frac{1}{2}-\frac{1}{2}\sin\left(\frac{\pi}{2}\frac{r-R}{D}\right), & R-D<r<R+D \0,&r>R+D\end{array} \right.$$ | $$f_\mathrm{C}(r)=\left{\begin{array}{ll}1, & r \leq R-D \\frac{1}{2}-\frac{1}{2}\sin\left[\frac{\pi}{2D}(r-R)\right], & |
From the parameters
Lines that are not blank or comments (starting with #) define parameters for a triplet of elements. The parameters in a single entry correspond to coefficients in the formula above:
Tersoff_1 | element 1 | element 2 | element 3 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Note | the center of atom in a 3-body interaction | the atom bonded to the center atom | the atom influencing the 1-2 bond in a bond-order sense | 1/distance units | can be a value < -1 or > 1 | 1/distance units | energy units | distance units | distance units | 1/distance units | energy units | ||||||
1 | 1 | 1 |
-
The
$n$ ,$\beta$ ,$\lambda_2$ ,$B$ ,$\lambda_1$ , and$A$ parameters are only used for two-body interactions. -
The
$m$ ,$\gamma$ ,$\lambda_3$ ,$c$ ,$d$ , and$\cos\theta_0$ parameters are only used for three-body interactions. -
The
$R$ and$D$ parameters are used for both two-body and three-body interactions. -
The non-annotated parameters are unitless.
-
The value of
$m$ must be 3 or 1. -
The Tersoff potential file must contain entries for all the elements listed in the pair_coeff command. It can also contain entries for additional elements not being used in a particular simulation; LAMMPS ignores those entries.
-
For a single-element simulation, only a single entry is required (e.g. SiSiSi). For a two-element simulation, the file must contain 8 entries (for SiSiSi, SiSiC, SiCSi, SiCC, CSiSi, CSiC, CCSi, CCC), that specify Tersoff parameters for all permutations of the two elements interacting in three-body configurations. Thus for 3 elements, 27 entries would be required, etc.
-
The first element in the entry is the center atom in a three-body interaction and it is bonded to the second atom and the bond is influenced by the third atom.
- Thus an entry for SiCC means Si bonded to a C with another C atom influencing the bond.
- Thus three-body parameters for SiCSi and SiSiC entries will not, in general, be the same. The parameters used for the two-body interaction come from the entry where the second element is repeated.
- Thus the two-body parameters for Si interacting with C, comes from the SiCC entry.
-
The parameters used for a particular three-body interaction come from the entry with the corresponding three elements. The parameters used only for two-body interactions (
$n$ ,$\beta$ ,$\lambda_{2}$ ,$B$ ,$\lambda_{1}$ , and$A$ ) in entries whose second and third element are different (e.g. SiCSi) are not used for anything and can be set to 0.0 if desired.
The WC potential is taken from
Ref.1: N. Juslin, P. Erhart, P. Träskelin, J. Nord, K. O. E. Henriksson, K. Nordlund, E. Salonen, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system, J. Appl. Phys., 98, 123520(2005); DO: 10.1063/1.2149492.
Ref.2: M.V.G. Petisme, M.A. Gren, G. Wahnström, Molecular dynamics simulation of WC/WC grain boundary sliding resistance in WC-Co cemented carbides at high temperature, Int. J. Refract. Hard Met., 49, 75--80(2015); DOI: 10.1016/j.ijrmhm.2014.07.037.
Note: there is a typo for the "beta" value of C-C in Table 1 of Ref. 2, which is inconsistent with the one in Ref. 1.
The GaN potential is taken from
Ref.3: J. Nord, K. Albe, P. Erhart, and K. Nordlund, Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride, J. Phys. Condens Matter, 15, 5649 (2003); DOI: 10.1088/0953-8984/15/32/324.
Source 1: provided by openKIM. In this file, the n values of 'Ga Ga N', 'N Ga N', 'N N Ga', 'Ga N Ga' are set to 0.0.
Source 2: Provided by LAMMPS. In this file, the n values of 'Ga Ga N', 'N Ga N', 'N N Ga', 'Ga N Ga' are set to 1.0.
This difference in the setup of n doesn't affect the simulation results. It will give identical results.
The GaAs potential is taken from
Ref. 4: K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs, Phys. Rev. B 66, 035205(2002); DOI: 10.1103/PhysRevB.66.035205.
Source 1: provided by openKIM. In this file, the n values of 'Ga Ga As', 'As Ga As', 'As As Ga', 'Ga As Ga' are set to 0.0.
The ZnO potential is taken from
Ref. 5: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, J. Phys.: Condens. Matter 18 (2006)6585-6605; DOI: 10.1088/0953-8984/18/29/003.
Source 1: provided by openKIM. In this file, the n values of 'Zn Zn O', 'O Zn O', 'O O Zn', 'Zn O Zn' are set to 0.0.
Note: some discussions about the reliability of this Zn-O potential can be found on the forum of lammps.
The Au potential is taken from
Ref. 6: M. Backman, N. Juslin, and K. Nordlund, Bond order potential for gold, Eur. Phys. J. B 85(2012)317; DOI: 10.1140/epjb/e2012-30429-y.
The PtC potential is taken from
Ref. 7: K. Albe, K. Nordlund, and R. S. Averback, Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Phys. Rev. B 65 (2002)195124; DOI: 10.1103/physrevb.65.195124.
The Ti-Al-C potential for Ti3AlC2 MAX Phase and Ti-Si-C poential for Ti3SiC2 MAX Phase are taken from
Ref. 8: G. Plummer and G. J. Tucker, Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases, Phys. Rev. B 100 (2019)214114; DOI: 10.1103/PhysRevB.100.214114.
The Be-O potential is taken from
Ref. 9: J. Byggmästar, E. A. Hodille, Y. Ferro, and K. Nordlund, Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions, J. Phys.: Condens. Matter, 30, 135001(2018); DOI: 10.1088/1361-648X/aaafb3.
To describe repulsive short-range interactions more accurately, the universal repulsive Ziegler-Biersack-Littmark (ZBL) potential VZBL (rij) is used jointly with the original potential Vij.
V'ij = F(rij) Vij + [1-F(rij)] VZBL
F(rij) is Fermi function, i.e., 1/[1+exp(-bf (rij -rf))]
Parameters | Be-Be | O-O | Be-O |
---|---|---|---|
bf | 15.0 | 12.0 | 15.0 |
rf | 0.8 | 0.5 | 0.8 |
The Be-C potential is taken from
Ref. 10: C. Björkas, N. Juslin, H. Timko, K. Vörtler, K. Nordlund, K. Henriksson, and P. Erhart, Interatomic potentials for the Be-C-H system, J. Phys.: Condens. Matter, 21, 445002(2009); DOI: 10.1088/0953-8984/21/44/445002.
To describe repulsive short-range interactions more accurately, the universal repulsive Ziegler-Biersack-Littmark (ZBL) potential VZBL (rij) is used jointly with the original potential Vij.
V'ij = F(rij) Vij + [1-F(rij)] VZBL
F(rij) is Fermi function, i.e., 1/[1+exp(-bf (rij -rf))]
Parameters | Be-Be | C-C | Be-C |
---|---|---|---|
bf | 15.0 | 8.0 | 16.0 |
rf | 0.8 | 0.6 | 0.7 |
The W-N potential is taken from
Ref. 11: J. Polvi, K. Heinola, and K. Nordlund, An interatomic potential for W–N interactions, Modelling Simul. Mater. Sci. Eng., 24, 065007(2016); DOI: 10.1088/0965-0393/24/6/065007.
To describe repulsive short-range interactions more accurately, the universal repulsive Ziegler-Biersack-Littmark (ZBL) potential VZBL (rij) is used jointly with the original potential Vij.
V'ij = F(rij) Vij + [1-F(rij)] VZBL
F(rij) is Fermi function, i.e., 1/[1+exp(-bf (rij -rf))]
Parameters | W-W | N-N | W-N |
---|---|---|---|
bf | 12.0 | 12.0 | 12.0 |
rf | 1.3 | 0.5 | 0.4 |
The parameters for W-W are taken from
Ref. 12: T. Ahlgren, K. Heinola, N. Juslin, and A. Kuronen, Bond-order potential for point and extended defect simulations in tungsten, J. Appl. Phys. 107, 033516(2010); DOI:10.1063/1.3298466.
The Be-W potential is taken from
Ref. 13: C. Björkas, K. O. E. Henriksson, M. Probst, and K. Nordlund, A Be–W interatomic potential, J. Phys.: Condens. Matter, 22, 352206(2010); DOI: 10.1088/0953-8984/22/35/352206.
To describe repulsive short-range interactions more accurately, the universal repulsive Ziegler-Biersack-Littmark (ZBL) potential VZBL (rij) is used jointly with the original potential Vij.
V'ij = F(rij) Vij + [1-F(rij)] VZBL
F(rij) is Fermi function, i.e., 1/[1+exp(-bf (rij -rf))]
Parameters | Be-Be | W-W | Be-W |
---|---|---|---|
bf | 15.0 | 12.0 | 13.0 |
rf | 0.8 | 1.3 | 1.3 |
The Fe potential is taken from
Ref. 14: M. Müller, P. Erhart and K. Albe, Analytic bond-order potential for bcc and fcc iron-comparison with established embedded-atom method potentials, J. Phys.: Condens. Matter, 19, 326220(2007); DOI: 10.1088/0953-8984/19/32/326220.
The Mo-Er potential is taken from
Ref. 15: Q. Q. Sun, T. Yang, L. Yang, S. M. Peng, X. G. Long, X. S. Zhou, X. T. Zu, and F. Gao, Analytical interactomic potential for a molybdenum–erbium system, Modelling Simul. Mater. Sci. Eng., 24, 045018(2016); DOI: 10.1088/0965-0393/24/4/045018.
The Si and Ge potentials are taken from
Ref. 16: Brian Andrew Gillespie, Bond Order Potentials for Group IV Semiconductors, University of Virginia, 2009; URL: https://www2.virginia.edu/ms/research/wadley/Thesis/BGillespiePhD.pdf.
The Fe-O potential is taken from
Ref. 17: J. Byggmästar, M. Nagel, K. Albe, K. O. E. Henriksson and K. Nordlund, Analytical interatomic bond-order potential for simulations of oxygen defects in iron, J. Phys.: Condens. Matter, 31, 215401(2019); DOI: 10.1088/1361-648X/ab0931.
To describe repulsive short-range interactions more accurately, the universal repulsive Ziegler-Biersack-Littmark (ZBL) potential VZBL (rij) is used jointly with the original potential Vij.
V'ij = F(rij) Vij + [1-F(rij)] VZBL
F(rij) is Fermi function, i.e., 1/[1+exp(-bf (rij -rf))]
Parameters | Fe-Fe | O-O | Fe-O |
---|---|---|---|
bf | 2.9 | 12.0 | 10.0 |
rf | 0.95 | 0.5 | 1.0 |