Skip to content

Latest commit

 

History

History
197 lines (153 loc) · 7.61 KB

README.md

File metadata and controls

197 lines (153 loc) · 7.61 KB

ParsNER 🦁



Introduction

This repo contains all existing pretrained models that are fine-tuned for the Named Entity Recognition (NER) task. These models trained on a mixed NER dataset collected from ARMAN, PEYMA, and WikiANN that covered ten types of entities:

  • Date (DAT)
  • Event (EVE)
  • Facility (FAC)
  • Location (LOC)
  • Money (MON)
  • Organization (ORG)
  • Percent (PCT)
  • Person (PER)
  • Product (PRO)
  • Time (TIM)

Dataset Information

Records B-DAT B-EVE B-FAC B-LOC B-MON B-ORG B-PCT B-PER B-PRO B-TIM I-DAT I-EVE I-FAC I-LOC I-MON I-ORG I-PCT I-PER I-PRO I-TIM
Train 29133 1423 1487 1400 13919 417 15926 355 12347 1855 150 1947 5018 2421 4118 1059 19579 573 7699 1914 332
Valid 5142 267 253 250 2362 100 2651 64 2173 317 19 373 799 387 717 270 3260 101 1382 303 35
Test 6049 407 256 248 2886 98 3216 94 2646 318 43 568 888 408 858 263 3967 141 1707 296 78

Download You can download the dataset from here

Evaluation

The following tables summarize the scores obtained by pretrained models overall and per each class.

Model accuracy precision recall f1
Bert 0.995086 0.953454 0.961113 0.957268
Roberta 0.994849 0.949816 0.960235 0.954997
Distilbert 0.994534 0.946326 0.95504 0.950663
Albert 0.993405 0.938907 0.943966 0.941429

Bert

number precision recall f1
DAT 407 0.860636 0.864865 0.862745
EVE 256 0.969582 0.996094 0.982659
FAC 248 0.976190 0.991935 0.984000
LOC 2884 0.970232 0.971914 0.971072
MON 98 0.905263 0.877551 0.891192
ORG 3216 0.939125 0.954602 0.946800
PCT 94 1.000000 0.968085 0.983784
PER 2645 0.965244 0.965974 0.965608
PRO 318 0.981481 1.000000 0.990654
TIM 43 0.692308 0.837209 0.757895

Roberta

number precision recall f1
DAT 407 0.844869 0.869779 0.857143
EVE 256 0.948148 1.000000 0.973384
FAC 248 0.957529 1.000000 0.978304
LOC 2884 0.965422 0.968100 0.966759
MON 98 0.937500 0.918367 0.927835
ORG 3216 0.943662 0.958333 0.950941
PCT 94 1.000000 0.968085 0.983784
PER 2646 0.957030 0.959562 0.958294
PRO 318 0.963636 1.000000 0.981481
TIM 43 0.739130 0.790698 0.764045

Distilbert

number precision recall f1
DAT 407 0.812048 0.828010 0.819951
EVE 256 0.955056 0.996094 0.975143
FAC 248 0.972549 1.000000 0.986083
LOC 2884 0.968403 0.967060 0.967731
MON 98 0.925532 0.887755 0.906250
ORG 3216 0.932095 0.951803 0.941846
PCT 94 0.936842 0.946809 0.941799
PER 2645 0.959818 0.957278 0.958546
PRO 318 0.963526 0.996855 0.979907
TIM 43 0.760870 0.813953 0.786517

Albert

number precision recall f1
DAT 407 0.820639 0.820639 0.820639
EVE 256 0.936803 0.984375 0.960000
FAC 248 0.925373 1.000000 0.961240
LOC 2884 0.960818 0.960818 0.960818
MON 98 0.913978 0.867347 0.890052
ORG 3216 0.920892 0.937500 0.929122
PCT 94 0.946809 0.946809 0.946809
PER 2644 0.960000 0.944024 0.951945
PRO 318 0.942943 0.987421 0.964670
TIM 43 0.780488 0.744186 0.761905

How To Use

You use this model with Transformers pipeline for NER.

Installing requirements

pip install sentencepiece
pip install transformers

How to predict using pipeline

from transformers import AutoTokenizer
from transformers import AutoModelForTokenClassification  # for pytorch
from transformers import TFAutoModelForTokenClassification  # for tensorflow
from transformers import pipeline

# model_name_or_path = "HooshvareLab/bert-fa-zwnj-base-ner"  # Roberta
# model_name_or_path = "HooshvareLab/roberta-fa-zwnj-base-ner"  # Roberta
model_name_or_path = "HooshvareLab/distilbert-fa-zwnj-base-ner"  # Distilbert
# model_name_or_path = "HooshvareLab/albert-fa-zwnj-base-v2-ner"  # Albert

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

model = AutoModelForTokenClassification.from_pretrained(model_name_or_path)  # Pytorch
# model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path)  # Tensorflow

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "در سال ۲۰۱۳ درگذشت و آندرتیکر و کین برای او مراسم یادبود گرفتند."

ner_results = nlp(example)
print(ner_results)

Models

Hugging Face Model Hub

Training

All models were trained on a single NVIDIA P100 GPU with following parameters.

Arguments

"task_name": "ner"
"model_name_or_path": model_name_or_path
"train_file": "/content/ner/train.csv"
"validation_file": "/content/ner/valid.csv"
"test_file": "/content/ner/test.csv"
"output_dir": output_dir
"cache_dir": "/content/cache"
"per_device_train_batch_size": 16
"per_device_eval_batch_size": 16
"use_fast_tokenizer": True
"num_train_epochs": 5.0
"do_train": True
"do_eval": True
"do_predict": True
"learning_rate": 2e-5
"evaluation_strategy": "steps"
"logging_steps": 1000
"save_steps": 1000
"save_total_limit": 2
"overwrite_output_dir": True
"fp16": True
"preprocessing_num_workers": 4

Cite

Please cite this repository in publications as the following:

@misc{ParsNER,
  author = {Hooshvare Team},
  title = {Pre-Trained NER models for Persian},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/hooshvare/parsner}},
}

Questions?

Post a Github issue on the ParsNER Issues repo.