-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
247 lines (204 loc) · 8.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from im2mesh.checkpoints import CheckpointIO
from im2mesh import config, data
import torch
from torch import nn
import torch.optim as optim
from tensorboardX import SummaryWriter
import numpy as np
import os
import argparse
import time
import yaml
class LearningRateSchedule:
def get_learning_rate(self, epoch):
pass
# > The learning rate is initialized to `initial` and then every `interval` epochs, the learning rate
# is multiplied by `factor`
class StepLearningRateSchedule(LearningRateSchedule):
def __init__(self, initial, interval, factor):
self.initial = initial
self.interval = interval
self.factor = factor
def get_learning_rate(self, epoch):
return self.initial * (self.factor**(epoch // self.interval))
def adjust_learning_rate(lr_schedules, optimizer, epoch):
"""
It takes a list of learning rate schedules and an optimizer, and adjusts the learning rate of each
parameter group in the optimizer according to the corresponding learning rate schedule
:param lr_schedules: a list of learning rate schedules, one for each parameter group
:param optimizer: the optimizer to use
:param epoch: the current epoch number
"""
for i, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr_schedules[i].get_learning_rate(epoch)
def get_lr(optimizer):
"""
It returns the learning rate of the optimizer
:param optimizer: the optimizer used to train the model
:return: The learning rate of the optimizer.
"""
for param_group in optimizer.param_groups:
return param_group["lr"]
# Arguments
parser = argparse.ArgumentParser(description='Train a 4D model.')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no-cuda', action='store_true', help='Do not use cuda.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
is_cuda = (torch.cuda.is_available() and not args.no_cuda)
device = torch.device("cuda" if is_cuda else "cpu")
# Set t0
t0 = time.time()
# Shorthands
out_dir = cfg['training']['out_dir']
batch_size = cfg['training']['batch_size']
batch_size_vis = cfg['training']['batch_size_vis']
batch_size_val = cfg['training']['batch_size_val']
backup_every = cfg['training']['backup_every']
lr = cfg['training']['learning_rate']
model_selection_metric = cfg['training']['model_selection_metric']
if cfg['training']['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif cfg['training']['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be '
'either maximize or minimize.')
## Output directory
if not os.path.exists(out_dir):
os.makedirs(out_dir)
## Copy current config
with open(os.path.join(out_dir, 'cfg.yaml'), 'w') as f:
yaml.dump(cfg, f)
## Dataset
train_dataset = config.get_dataset('train', cfg)
val_dataset = config.get_dataset('val', cfg)
print(len(train_dataset), len(val_dataset))
## Dataloader
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=16,
shuffle=True,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size_val,
num_workers=4,
shuffle=False,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
## For visualizations
vis_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size_vis,
shuffle=True,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
## Model
model = config.get_model(cfg, device=device, dataset=train_dataset)
# if torch.cuda.device_count() > 1:
# print("Let's use %d GPUs!" % (torch.cuda.device_count()))
# model = nn.DataParallel(model)
### Get optimizer and trainer
scheduler = StepLearningRateSchedule(
lr, # Initial
5000, # Interval
0.5, # Factor
)
optimizer = optim.Adam(model.parameters(), lr=scheduler.get_learning_rate(0))
# optimizer = optim.Adam(model.parameters(), lr=lr)
trainer = config.get_trainer(model, optimizer, cfg, device=device)
# Load pre-trained model is existing
kwargs = {
'model': model,
'optimizer': optimizer,
}
checkpoint_io = CheckpointIO(
out_dir,
initialize_from=cfg['model']['initialize_from'],
initialization_file_name=cfg['model']['initialization_file_name'],
**kwargs)
try:
load_dict = checkpoint_io.load('model.pt')
except FileExistsError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', -1)
it = load_dict.get('it', -1)
metric_val_best = load_dict.get('loss_val_best',
-model_selection_sign * np.inf)
if metric_val_best == np.inf or metric_val_best == -np.inf:
metric_val_best = -model_selection_sign * np.inf
print('Current best validation metric (%s): %.8f' %
(model_selection_metric, metric_val_best))
logger = SummaryWriter(os.path.join(out_dir, 'logs'))
## Shorthands
print_every = cfg['training']['print_every']
checkpoint_every = cfg['training']['checkpoint_every']
validate_every = cfg['training']['validate_every']
visualize_every = cfg['training']['visualize_every']
## Print model
nparameters = sum(p.numel() for p in model.parameters())
# print(model)
print('Total number of parameters: %d' % nparameters)
## Training loop
while True:
epoch_it += 1
mean_loss = 0
# if epoch_it > 0:
# print("Starting faster training ..........")
# # loader.dataset.set_use_cache(use_cache=True)
# train_loader.num_workers = 16
# val_loader.num_workers = 4
for batch in train_loader:
# print(batch)
it += 1
loss, loss_recon, loss_corr = trainer.train_step(cfg, batch)
logger.add_scalar('train/loss_iter', loss, it)
logger.add_scalar('train/loss_recon', loss_recon, it)
logger.add_scalar('train/loss_corr', loss_corr, it)
mean_loss += loss
# Print output
if print_every > 0 and (it % print_every) == 0:
print('[Epoch %02d] it=%03d, loss=%.4f, lr=%.6f' %
(epoch_it, it, loss, get_lr(optimizer)))
# # Visualize output
# if visualize_every > 0 and (it % visualize_every) == 0:
# print('Visualizing')
# trainer.visualize(data_vis)
# Save checkpoint
if (checkpoint_every > 0 and (it % checkpoint_every) == 0):
print('Saving checkpoint')
checkpoint_io.save('model.pt',
epoch_it=epoch_it,
it=it,
loss_val_best=metric_val_best)
# Backup if necessary
if (backup_every > 0 and (it % backup_every) == 0):
print('Backup checkpoint')
checkpoint_io.save('model_%d.pt' % it,
epoch_it=epoch_it,
it=it,
loss_val_best=metric_val_best)
# Run validation
if validate_every > 0 and (it % validate_every) == 0:
eval_dict = trainer.evaluate(val_loader)
metric_val = eval_dict[model_selection_metric]
print('Validation metric (%s): %.4f' %
(model_selection_metric, metric_val))
for k, v in eval_dict.items():
logger.add_scalar('val/%s' % k, v, it)
if model_selection_sign * (metric_val - metric_val_best) > 0:
metric_val_best = metric_val
print('New best model (loss %.4f)' % metric_val_best)
checkpoint_io.save('model_best.pt',
epoch_it=epoch_it,
it=it,
loss_val_best=metric_val_best)
if it > 396000:
print('Iter limit reached. Exiting.')
checkpoint_io.save('model.pt',
epoch_it=epoch_it,
it=it,
loss_val_best=metric_val_best)
exit(3)
logger.add_scalar('train/loss_epoch', mean_loss, epoch_it)
logger.add_scalar('train/lr_epoch', get_lr(optimizer), epoch_it)