-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_rvm.m
83 lines (79 loc) · 3.02 KB
/
run_rvm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% Train RVM model.
% Script developed by Arman Hassanniakalager
% Created on 29 Nov 2015 17:45 GMT,
% Last modified 19 Mar 2017 11:58 GMT.
% ****************************************
%% Input arguments:
% sym: The desired ticker name available in directory e.g. 'EURUSD'
% ****************************************
%% Outputs:
% A file with all information required named as symRVMres e.g.
% EURUSDRVMres.mat
%% Function
function run_rvm(sym)
%rvmplus(sym,measure,numprc,topx)
symser={sym};
% if ~exist('topx','var')
% warning('No top number/percentile level determined. 5 is used!');
% topx=10;
% end
for iter=1:size(symser,2)
sym1=symser{iter};
symDST=['DSTres-',sym1];
symres=[sym1,'-insample'];
load(symDST,'goldind');
load(symres,'inputser','data','finalret');
retinit=price2ret(data);
datadir=sign(retinit);
% switch measure
% case 'ret'
% measureser=finalret(goldind);
% case 'sharperatio'
% measureser= sharpe(ret(:,goldind),0);
% case 'accuracy'
% measureser=sum(inputser(1:end-1,goldind)==datadir)/numel(datadir);
% otherwise
% warning('No correct measure series selected! Measurement basis is set to return.');
% measureser=finalret(goldind);
% end
%
% switch numprc
% case 'count'
% [sortmeasureser,sortind]=sort(measureser,'descend');
% goldindplus=goldind(sortind(1:topx));
% case 'prc'
% newind=find(measureser>=prctile(measureser,100-topx));
% goldindplus=goldind(newind);
% otherwise
% warning('Count/percentile selection is not properly determined. Count is chosen!');
% [sortmeasureser,sortind]=sort(measureser,'descend');
% goldindplus=goldind(sortind(1:topx));
% end
if numel(goldind)>0
X=inputser(1:end,goldind);
u=nan(1,numel(goldind));
for i=1:numel(goldind)
u(i)=find(cumsum(X(:,i))~=0,1,'first');
end
dim=max(u);
Xser=inputser(dim+1:end-1,goldind);
Tser=datadir(dim+1:end);
profit=retinit(dim+1:end);
kernel='Gaussian';
options=SB2_UserOptions('monitor',10);
settings = SB2_ParameterSettings;
[PARAMETER,HYPERPARAMETER,DIAGNOSTIC]=SparseBayes(kernel,Xser,Tser,options,settings);
predictvalSB=(PARAMETER.Value')*Xser(:,(PARAMETER.Relevant'))';
predictdirSB=sign(predictvalSB)';
correctpredind=find(predictdirSB-Tser==0);
errlevSB=sum(sign(abs(predictdirSB-Tser)))/numel(Tser);
mdlinput=Xser(:,(PARAMETER.Relevant'));
mdloutput=predictdirSB;
disp(['Loss for Sparse Bayes in series of ',sym1,' is ',num2str(roundn(errlevSB,-3)*100),'%']);
SBret=predictdirSB.*profit;
SBretfinal=sum(SBret);
disp(['Return for ',sym1,' with SB results is ',num2str(roundn(sum(SBret)*100,-2)),'%']);
save([sym1,'RVMres']);
end
end
end