-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprime_root.py
77 lines (71 loc) · 1.76 KB
/
prime_root.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import sys
sys.path.append("../..")
from MyCrypto.algorithms.power import quick_power
from MyCrypto.algorithms.prime_sieve import sieveV3
def eular(n):
m = n
if not m & 1:
m >>= 1
for p in range(3, m+1):
if m % p == 0:
while m % p == 0:
m //= p
break
if m != 1:
return None
if n & 1:
phi = n//p*(p-1)
else:
phi = n//2//p*(p-1)
return phi
def naive_pr(n):
if n == 2:
return [1]
if n == 4:
return [3]
phi = eular(n)
if not phi:
return None
res = list()
for i in range(2, n):
if not [j for j in range(2, phi) if quick_power(i, j, n) == 1]:
res.append(i)
return res
def naive_fact(n):
fact = list()
for i in range(2, n+1):
if n % i == 0:
fact.append(i)
while n % i == 0:
n //= i
if n == 1:
break
return fact
def advance_fact(n): # slower than naive method ?
fact = list()
for p in sieveV3(n):
if n % p == 0:
fact.append(p)
return fact
def advance_pr(n):
if n == 2:
return [1]
if n == 4:
return [3]
phi = eular(n)
if not phi:
return None
factors = naive_fact(phi)
res = list()
for i in range(2, n):
if not [x for x in factors if quick_power(i, phi//x, n) == 1]:
res.append(i)
return res
if __name__ == '__main__':
import timeit
print(naive_pr(25))
print(advance_pr(25))
t1 = timeit.Timer('naive_pr(361)', setup='from __main__ import naive_pr')
t2 = timeit.Timer('advance_pr(361)', setup='from __main__ import advance_pr')
print('naive prime root:', t1.timeit(1))
print('advance prime root:', t2.timeit(1))