-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
167 lines (153 loc) · 8.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import math
import torch
import random
import argparse
import numpy as np
from sklearn import metrics
from torch.utils.data import DataLoader
from model import RepWalk
from loss_func import CrossEntropy
from data_utils import MyDataset, build_tokenizer, build_embedding_matrix
class Instructor:
''' Model training and evaluation '''
def __init__(self, opt): # prepare for training the model
self.opt = opt # hyperparameters and options
opt.tokenizer = build_tokenizer(fnames=opt.dataset_file.values(), dataset=opt.dataset) # transfrom tokens to indices
embedding_matrix = build_embedding_matrix(vocab=opt.tokenizer.vocab['word'], dataset=opt.dataset) # pre-trained glove embeddings
self.trainset = MyDataset(fname=opt.dataset_file['train'], tokenizer=opt.tokenizer) # training set
self.testset = MyDataset(fname=opt.dataset_file['test'], tokenizer=opt.tokenizer) # testing set
self.model = RepWalk(embedding_matrix, opt).to(opt.device) # neural network model
self._print_args() # print arguments
def _print_args(self): # pring arguments
n_trainable_params, n_nontrainable_params = 0, 0
for p in self.model.parameters():
n_params = torch.prod(torch.tensor(p.shape))
if p.requires_grad:
n_trainable_params += n_params
else:
n_nontrainable_params += n_params
if self.opt.device.type == 'cuda':
print(f"cuda memory allocated: {torch.cuda.memory_allocated(self.opt.device.index)}")
print(f"n_trainable_params: {int(n_trainable_params)}, n_nontrainable_params: {int(n_nontrainable_params)}")
print('training arguments:')
for arg in vars(self.opt):
print(f">>> {arg}: {getattr(self.opt, arg)}")
def _reset_params(self): # reset model parameters
for name, param in self.model.named_parameters():
if param.requires_grad:
if 'embedding' in name: # treat embedding matrices as special cases
weight = torch.nn.init.xavier_uniform_(torch.zeros_like(param)) # use xavier_uniform to initialize embedding matrices
weight[0] = torch.tensor(0, dtype=param.dtype, device=param.device) # the vector corresponding to padding index shuold be zero
setattr(param, 'data', weight) # update embedding matrix
else:
if len(param.shape) > 1:
torch.nn.init.xavier_uniform_(param) # use xavier_uniform to initialize weight matrices
else:
stdv = 1. / math.sqrt(param.size(0))
torch.nn.init.uniform_(param, a=-stdv, b=stdv) # use uniform to initialize bias vectors
def _train(self, dataloader, criterion, optimizer): # train the model
train_loss, n_correct, n_train = 0, 0, 0 # reset counters
self.model.train() # switch model to training mode
for sample_batched in dataloader: # mini-batch optimization
inputs = list(map(lambda x: x.to(self.opt.device), sample_batched[0])) # move tensors to target device (e.g. cuda)
labels = sample_batched[1].to(self.opt.device) # move labels to target device
outputs = self.model(inputs) # compute outputs
optimizer.zero_grad() # clear gradient accumulators
loss = criterion(outputs, labels) # compute batch loss
loss.backward() # compute gradients through back-propagation
optimizer.step() # update model parameters
train_loss += loss.item() * len(labels) # update train loss
n_correct += (torch.argmax(outputs[0], -1) == labels).sum().item() # update correct sample number
n_train += len(labels) # update train sample number
return train_loss / n_train, n_correct / n_train
def _evaluate(self, dataloader, criterion): # evaluate the model
test_loss, n_correct, n_test = 0, 0, 0 # reset counters
labels_all, predicts_all = None, None # initialize variables
self.model.eval() # switch model to evaluation mode
with torch.no_grad(): # turn off gradients
for sample_batched in dataloader:
inputs = list(map(lambda x: x.to(self.opt.device), sample_batched[0]))
labels = sample_batched[1].to(self.opt.device)
outputs = self.model(inputs)
loss = criterion(outputs, labels)
test_loss += loss.item() * len(labels)
n_correct += (torch.argmax(outputs[0], -1) == labels).sum().item()
n_test += len(labels)
labels_all = torch.cat((labels_all, labels), dim=0) if labels_all is not None else labels
predicts_all = torch.cat((predicts_all, outputs[0]), dim=0) if predicts_all is not None else outputs[0]
f1 = metrics.f1_score(labels_all.cpu(), torch.argmax(predicts_all, -1).cpu(), labels=[0, 1, 2], average='macro') # compute f1 score
return test_loss / n_test, n_correct / n_test, f1
def run(self):
_params = filter(lambda p: p.requires_grad, self.model.parameters()) # trainable parameters
optimizer = torch.optim.Adam(_params, lr=self.opt.lr, weight_decay=self.opt.l2reg) # use the Adam optimizer
criterion = CrossEntropy(beta=self.opt.beta, eps=self.opt.eps) # loss function implemented as described in paper
train_dataloader = DataLoader(dataset=self.trainset, batch_size=self.opt.batch_size, shuffle=True) # training dataloader
test_dataloader = DataLoader(dataset=self.testset, batch_size=self.opt.batch_size, shuffle=False) # testing dataloader
self._reset_params() # reset model parameters
best_test_acc, best_test_f1 = 0, 0 # record the best acc and f1 score on testing set
for epoch in range(self.opt.num_epoch):
train_loss, train_acc = self._train(train_dataloader, criterion, optimizer) # train the model
test_loss, test_acc, test_f1 = self._evaluate(test_dataloader, criterion) # evaluate the model
if test_acc > best_test_acc:
best_test_acc = test_acc
best_test_f1 = test_f1
print(f"{100*(epoch+1)/self.opt.num_epoch:6.2f}% > loss: {train_loss:.4f}, acc: {train_acc:.4f}, test acc: {test_acc:.4f}, test f1: {test_f1:.4f}")
print('#' * 50)
print(f"best test acc: {best_test_acc:.4f}, best test f1: {best_test_f1:.4f}")
def main():
''' dataset files'''
dataset_files = {
'restaurant': {
'train': os.path.join('datasets', 'Restaurants_Train.json'),
'test': os.path.join('datasets', 'Restaurants_Test.json')
},
'laptop': {
'train': os.path.join('datasets', 'Laptops_Train.json'),
'test': os.path.join('datasets', 'Laptops_Test.json')
},
'twitter': {
'train': os.path.join('datasets', 'Tweets_Train.json'),
'test': os.path.join('datasets', 'Tweets_Test.json')
},
'restaurant16': {
'train': os.path.join('datasets', 'Restaurants16_Train.json'),
'test': os.path.join('datasets', 'Restaurants16_Test.json')
}
}
''' hyperparameters '''
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='restaurant', type=str, help=', '.join(dataset_files.keys()))
parser.add_argument('--word_dim', default=300, type=int)
parser.add_argument('--pos_dim', default=30, type=int)
parser.add_argument('--dep_dim', default=50, type=int)
parser.add_argument('--hidden_dim', default=300, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--num_epoch', default=100, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--l2reg', default=1e-5, type=float)
parser.add_argument('--embed_dropout', default=0.5, type=float)
parser.add_argument('--bilinear_dropout', default=0, type=float)
parser.add_argument('--fc_dropout', default=0, type=float)
parser.add_argument('--beta', default=0.01, type=float)
parser.add_argument('--eps', default=0.01, type=float)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--device', default=None, type=str, help='cpu, cuda')
''' parse arguments '''
opt = parser.parse_args()
opt.dataset_file = dataset_files[opt.dataset]
opt.seed = opt.seed if opt.seed else random.randint(0, 4294967295)
opt.device = torch.device(opt.device) if opt.device else torch.device('cuda' if torch.cuda.is_available() else 'cpu')
''' set random seed '''
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
''' if you are using cudnn '''
torch.backends.cudnn.deterministic = True # Deterministic mode can have a performance impact
torch.backends.cudnn.benchmark = False
''' run the model '''
ins = Instructor(opt)
ins.run()
if __name__ == '__main__':
main()