-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencodeData.py
268 lines (168 loc) · 7 KB
/
encodeData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding: utf-8 -*-
import nltk
import numpy as np
from keras.preprocessing.sequence import pad_sequences
import gc
import pandas as pd
from gensim.models import word2vec
from timeit import default_timer as timer
from concurrent.futures import ThreadPoolExecutor
from nltk.stem.porter import PorterStemmer
from settings import *
import string
import pickle
encoding_model = word2vec.Word2Vec.load(WORD2VEC_MODEL_LOC)
stemmer = PorterStemmer()
vocab = pickle.load( open( "vocab_dict.pkl", "rb" ) )
common_english_words = ["the", "be", "to", "of", "and", "a", "in", "that", "have", "i", "it",
"for", "not", "on","with", "he", "as", "you", "do","at","this","but",
"his", "by","from","they","we","say","her","she","or","an","will","my",
"one", "all","would","there","their","what","so","if","about","who",
"which", "me", "when", "go","make","can","like","no","him","your","could",
"them", "other","than","then","only","its","also","after","how","our",
"well","way","want","because","any","these","most","into","up"]
def stem_tokens(tokens, stemmer):
stemmed = []
for item in tokens:
stemmed_item = item
try:
stemmed_item = stemmer.stem(item)
except Exception:
pass
stemmed.append(stemmed_item)
return stemmed
def tokenize(text):
tokens = [x for x in nltk.word_tokenize(text) if x not in common_english_words]
if len(tokens) == 0:
tokens = [x for x in nltk.word_tokenize(text)]
for i in range(len(tokens)):
if len(''.join(e for e in tokens[i] if e.isalnum())) > 0:
tokens[i] = ''.join(e for e in tokens[i] if e.isalnum())
stems = stem_tokens(tokens, stemmer)
return stems
def show(message):
print(" ")
print(np.repeat("*", 50).tostring())
print(" " + message)
print(np.repeat("*", 50).tostring())
def getWordEncoding(word, encoding_model):
# word received may have any mixed cases !!
############# semantics vec
try:
skipgram_vect = encoding_model.wv[word]
except Exception:
print("EXCEPTION WHILE ENCODING")
print(word)
skipgram_vect = np.repeat(0, WORD_ENC_SIZE)
pass
w_tf = 1/NO_SENTS
try:
w_tf = vocab.get(word)/NO_SENTS
except:
print("EXCEPTION WHILE VOCAB LOOKUP")
print(word)
pass
return np.append(skipgram_vect, w_tf)
def encodeSentence(sent, encoding_model):
sent_encodings = []
tokens = tokenize(sent)
for i in range(len(tokens)):
word_enc = getWordEncoding(tokens[i], encoding_model)
sent_encodings.append(word_enc)
# put one word in at least to ensure padding in case of empty list
sent_encodings.append(np.repeat(0, word_encoding_vector_size))
padded_X = pad_sequences([sent_encodings], maxlen=max_sent_length, dtype='float32', padding='post', truncating='pre', value=0)
return padded_X
def process_question(q):
word_features = encodeSentence(q, encoding_model)
#print(word_features[0].shape)
return word_features[0] #np.reshape(word_features, (word_features.shape[1], word_features.shape[2]))
def generateEncodedTrainingDataQ1():
training_q1_sents = []
train = pd.read_csv(TRAIN_FILE)
print(">>>>>>>> Read train data size is {} ... ", train.shape)
questions = map(lambda x: str(x).lower().translate(None, string.punctuation), train.question1.values.tolist())
train = None
del train
gc.collect()
print(">>>>>>>> Generating training for pred model ... ")
index = 0
for q in questions:
training_q1_sents.append(process_question(q))
index += 1
if index % (100*MAGNITUDE) == 0:
print(">>>>>>>> Generated vector encodings training data for {} ... ".format(str(index)))
training_q1_sents = np.array(training_q1_sents)
print(">>>>>>>> The generated data shapes are as follows ... ")
print(training_q1_sents.shape)
np.save(TRAIN_Q1_SENTS, training_q1_sents)
def generateEncodedTrainingDataQ2():
training_q2_sents = []
train = pd.read_csv(TRAIN_FILE)
print(">>>>>>>> Read train data size is {} ... ", train.shape)
questions = map(lambda x: str(x).lower().translate(None, string.punctuation), train.question2.values.tolist())
train = None
del train
gc.collect()
print(">>>>>>>> Generating training for pred model ... ")
index = 0
for q in questions:
training_q2_sents.append(process_question(q))
index += 1
if index % (100*MAGNITUDE) == 0:
print(">>>>>>>> Generated vector encodings training data for {} ... ".format(str(index)))
training_q2_sents = np.array(training_q2_sents)
print(">>>>>>>> The generated data shapes are as follows ... ")
print(training_q2_sents.shape)
np.save(TRAIN_Q2_SENTS, training_q2_sents)
def generateEncodedTestDataQ1():
training_q1_sents = []
train = pd.read_csv(TEST_FILE)
print(">>>>>>>> Read train data size is {} ... ", train.shape)
questions = map(lambda x: str(x).lower().translate(None, string.punctuation), train.question1.values.tolist())
train = None
del train
gc.collect()
print(">>>>>>>> Generating training for pred model ... ")
index = 0
for q in questions:
training_q1_sents.append(process_question(q))
index += 1
if index % (100*MAGNITUDE) == 0:
print(">>>>>>>> Generated vector encodings training data for {} ... ".format(str(index)))
training_q1_sents = np.array(training_q1_sents)
print(">>>>>>>> The generated data shapes are as follows ... ")
print(training_q1_sents.shape)
np.save(TEST_Q1_SENTS, training_q1_sents)
def generateEncodedTestDataQ2():
training_q2_sents = []
train = pd.read_csv(TEST_FILE)
print(">>>>>>>> Read train data size is {} ... ", train.shape)
questions = map(lambda x: str(x).lower().translate(None, string.punctuation), train.question2.values.tolist())
train = None
del train
print(">>>>>>>> Generating training for pred model for {} items... ".format(len(questions)))
index = 0
for q in questions:
training_q2_sents.append(process_question(q))
index += 1
if index % (100*MAGNITUDE) == 0:
print(">>>>>>>> Generated vector encodings training data for {} ... ".format(str(index)))
training_q2_sents = np.array(training_q2_sents)
print(">>>>>>>> The generated data shapes are as follows ... ")
print(training_q2_sents.shape)
np.save("data/test_q2_part2.npy", training_q2_sents)
if __name__ == '__main__':
#show("STARTING")
start = timer()
show("Generating train data ... ")
generateEncodedTrainingDataQ1()
generateEncodedTrainingDataQ2()
print("Elapsed time: {}".format(timer()- start))
start = timer()
start = timer()
show("Generating test data ... ")
generateEncodedTestDataQ1()
generateEncodedTestDataQ2()
print("Elapsed time: {}".format(timer()- start))
start = timer()