-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsod(FVS,muscl)_im_LU-SGS.py
495 lines (396 loc) · 13.2 KB
/
sod(FVS,muscl)_im_LU-SGS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import numpy
import os
import copy
import matplotlib.pyplot as pyplot
# --------------------------
# -- initial value --
# --------------------------
nstep = 300 # 時間ステップ数
nx0 = 100 # 空間ステップ数
dt = 0.002 # 時間刻み幅
dx = 0.01 # 空間刻み幅
lbound = 1 # 仮想境界セル数
nx = nx0+2*lbound # 総空間セル数
# -- slope limiter --
k_muscl=1/3 # muscl精度
b_muscl=(3-k_muscl)/(1-k_muscl)
# --定数--
gamma=1.4 # 比熱比
norm_ok=1.0e-6
# -- 出力--
dir_name="sod_lusgs_0.002s_py" # 出力フォルダ名
out_name_front="time" # 出力ファイル名(先頭)
out_name_back="d-3"
# --------------------------
# -- function setup --
# --------------------------
#
# 基本量と保存量の設定
#
def setup(): # 初期値入力
global x, bol, bor, qf, Qc
u = [0.0]*nx # 速度
rho = [0.0]*nx # 密度
p = [0.0]*nx # 圧力
e = [0.0]*nx # エネルギー
x = [0.0]*nx # 位置
"""
e=p/(r-1)+rho*u^2/2
"""
for i in range(nx):
u[i] = 0.0
if i <= nx*0.5:
rho[i] = 1.0
p[i] = 1.0
else:
rho[i] = 0.125
p[i] = 0.1
e[i] = p[i]/(gamma-1)+rho[i]*(u[i]**2)/2
x[i] = i*dx-dx/2
bol = [0.0]*3 # 左端仮想セル
bor = [0.0]*3 # 右端仮想セル
for j in range(3):
if j == 0:
bol[j] = rho[0]
bor[j] = rho[nx-1]
elif j == 1:
bol[j] = u[0]*rho[0]
bor[j] = u[nx-1]*rho[nx-1]
elif j == 2:
bol[j] = e[0]
bor[j] = e[nx-1]
qf = [[0.0] * 3 for i in [1] * nx] # 基本量
Qc = [[0.0] * 3 for i in [1] * nx] # 保存量
for i in range(nx):
for j in range(3):
if j == 0:
qf[i][j] = u[i]
Qc[i][j] = rho[i]
elif j == 1:
qf[i][j] = rho[i]
Qc[i][j] = u[i]*rho[i]
elif j == 2:
qf[i][j] = p[i]
Qc[i][j] = e[i]
# --------------------------
# -- function cal_Q --
# --------------------------
#
# 時間ステップを進める
#
def cal_Q():
global Qc
Qc=inner_ite(Qc)
# --------------------------
# -- function bound --
# --------------------------
#
# 境界条件の設定
#
def bound(lQc): # 境界の計算
for i in range(3):
lQc[0][i] = 2*bol[i]-lQc[1][i] # 左端境界の計算
lQc[nx-1][i] = lQc[nx-2][i] # 右端の計算
return lQc
# ----------------------------
# -- function cal_for_lusgs --
# ----------------------------
#
# LU-SGSで行うLDU分解に向けて、ヤコビアン行列の近似とbetaの計算を行う
#
def cal_for_lusgs(lQc,lqf):
global Amatrix_plus,Amatrix_minus,beta_sigma
Amatrix_plus = numpy.empty((nx,3,3))
Amatrix_minus = numpy.empty((nx,3,3))
beta_sigma = numpy.empty(nx)
beta = 1.1
I = numpy.empty((3,3))
I[:][:] = 0.0
for i in range(3):
I[i][i] = 1.0
for i in range(0, nx):
H = (lQc[i][2]+lqf[i][2])/lQc[i][0]
u = lqf[i][0]
c = numpy.sqrt((gamma-1)*(H-0.5*u**2))
sigma = abs(u) + c
# iセルにおけるR,R^-1,Λ,|Λ|
R, R_inv, Gam, Gam_abs = A_pm(lQc[i],lqf[i])
A_matrix = numpy.dot((numpy.dot(R, Gam)), R_inv)
temp = I*beta*sigma
Amatrix_plus[i] = 0.5*(A_matrix+temp)
Amatrix_minus[i] = 0.5*(A_matrix-temp)
beta_sigma[i] = beta*sigma
# --------------------------
# -- function inner_ite --
# --------------------------
#
# 内部反復
#
def inner_ite(lQc):
global RHS
delta_Q = numpy.array([[0.0] * 3 for i in [1] * nx])
delta_Q_temp = numpy.array([[0.0] * 3 for i in [1] * nx])
Qcn = numpy.array(copy.deepcopy(lQc))
Qcm = numpy.array(copy.deepcopy(lQc))
# inner iteration
for ttt in range(10):
qfm=Qctoqf(Qcm)
cal_RHS(Qcm)
cal_for_lusgs(Qcm,qfm)
delta_Q = numpy.array([[0.0] * 3 for i in [1] * nx])
delta_Q2 = numpy.array([[0.0] * 3 for i in [1] * nx])
delta_Q_temp = numpy.array([[0.0] * 3 for i in [1] * nx])
lo_R=numpy.array(RHS)
sum_b=numpy.array([0.0] * 3)
for i in range(lbound,nx-lbound):
sum_b += abs(lo_R[i])
ite=0
con=0
# lusgs loop
while con==0:
delta_Q_temp = copy.deepcopy(delta_Q)
L = numpy.array([[0.0] * 3 for i in [1] * nx])
D = numpy.array([0.0]*nx)
U = numpy.array([[0.0] * 3 for i in [1] * nx])
for i in range(nx):
L[i] = dt*(numpy.dot(Amatrix_plus[i],delta_Q[i]))/2
D[i] = dx+dx+dt*(beta_sigma[i])
U[i] = dt*(numpy.dot(Amatrix_minus[i],delta_Q[i]))/2
RHS = numpy.array([[0.0] * 3 for i in [1] * nx])
# RHS
for i in range(lbound,nx-lbound):
RHS[i] = -(Qcm[i]-Qcn[i])*dx-dt*lo_R[i]
# (D+L)Q=Q
for i in range(lbound,nx-lbound):
delta_Q[i] = (L[i-1]+RHS[i]) / D[i]
# (D+U)Q=DQ
for i in range(lbound,nx-lbound):
delta_Q[i] = delta_Q[i] - U[i+1]/ D[i]
# 収束判定
if (ite+1) % 100 ==0:
sum_b_Ax=numpy.array([0.0] * 3)
for i in range(lbound,nx-lbound):
for j in range(3):
sum_b_Ax += abs(delta_Q[i]-delta_Q_temp[i])
norm2d=[0.0] * 3
for i in range(3):
norm2d[i]=sum_b_Ax[i]/sum_b[i]
if norm2d[0] < norm_ok and norm2d[1] < norm_ok and norm2d[2] < norm_ok:
con=1
ite += 1
delta_Q.tolist()
for i in range(lbound,nx-lbound):
for j in range(3):
Qcm[i][j]=Qcm[i][j]+delta_Q[i][j]
Qcm=bound(Qcm)
return Qcm
# --------------------------
# -- function inv_matrix --
# --------------------------
#
# ガウスの消去法により逆行列を求める
#
def inv_matrix(D):
# Sweep method
for l in range(3):
aa = 1.0 / D[l][l]
D[l][l] = 1.0
for m in range(3):
D[l][m] = D[l][m] * aa
for m in range(3):
if m != l:
bb = D[m][l]
D[m][l] = 0.0
for n in range(3):
D[m][n] = D[m][n] - bb*D[l][n]
return D
# --------------------------
# -- function cal_RHS --
# --------------------------
#
# 右辺の計算
# RHSを定義
#
def cal_RHS(lQc): # 境界フラックスの計算
global RHS
RHS = numpy.array([[0.0] * 3 for i in [1] * nx])
fvs(lQc) # FVS法によるフラックスの作成
for i in range(1, nx-1):
RHS[i] = Fplus[i]-Fplus[i-1]
RHS.tolist()
# --------------------------
# -- function fvs --
# --------------------------
#
# Flux Vector Splitting method
# Fplusを定義、(セル1と2の境界をFplus[1]に格納)
#
def fvs(lQc): # FVS法によるフラックスの計算(セル1と2の境界をFplus[1]に格納)
global Fplus
Fplus = [[0.0] * 3 for i in [1] * (nx+1)]
muscl(lQc)
for i in range(0, nx-1):
# i+1/2セルにおけるR,R^-1,Λ,|Λ|
R, R_inv, Gam, Gam_abs = A_pm(QcL[i],qfL[i])
Ap = numpy.dot((numpy.dot(R, Gam+Gam_abs)), R_inv) # 固有値が正のものを計算
# i+1/2セルにおけるR,R^-1,Λ,|Λ|
R, R_inv, Gam, Gam_abs = A_pm(QcR[i],qfR[i])
Am = numpy.dot((numpy.dot(R, Gam-Gam_abs)), R_inv) # 固有値が負のものを計算
Fplus[i] = 0.5*(numpy.dot(Ap, QcL[i]) + numpy.dot(Am, QcR[i])) # フラックスを計算
# --------------------------
# -- function A_pm --
# --------------------------
#
# ヤコビアン行列の正負の計算に向け、固有値等を計算
# A = R^(-1)ΛR としたとき
# R = R
# R_inv = R^(-1)
# Gam = Λ
#
def A_pm(lQc,lqf): # ヤコビアン行列の固有値もろもろ計算
H = (lQc[2]+lqf[2])/lQc[0] # エンタルピー
u = lqf[0]
c = numpy.sqrt((gamma-1)*(H-0.5*u**2))
b_para = (gamma-1)/c**2
a_para = 0.5*b_para*u**2
R = numpy.array([[1.0, 1.0, 1.0, ], [u-c, u, u+c],
[H-u*c, 0.5*u**2, H+u*c]])
R_inv = numpy.array([[0.5*(a_para+u/c), 0.5*(-b_para*u-1/c), 0.5*b_para], [
1-a_para, b_para*u, -b_para], [0.5*(a_para-u/c), 0.5*(-b_para*u+1/c), 0.5*b_para]])
Gam = numpy.array([[(u-c), 0.0, 0.0], [0.0, u, 0.0], [0.0, 0.0, (u+c)]])
Gam_abs = numpy.array(
[[abs(u-c), 0.0, 0.0], [0.0, abs(u), 0.0], [0.0, 0.0, abs(u+c)]])
return R, R_inv, Gam, Gam_abs
# --------------------------
# -- function yacobi_A --
# --------------------------
#
# ヤコビアン行列の計算
#
def yacobi_A(lQc,lqf):
yacobiAp=[0.0] * nx
yacobiAm=[0.0] * nx
for i in range(nx):
R, R_inv, Gam, Gam_abs = A_pm(lQc[i],lqf[i])
yacobiAp[i] = numpy.dot((numpy.dot(R, Gam+Gam_abs)), R_inv)
yacobiAm[i] = numpy.dot((numpy.dot(R, Gam-Gam_abs)), R_inv)
return yacobiAp,yacobiAm
# -------------------------------
# -- function muscl --
# -------------------------------
#
# muscl法による補間
#
def muscl(lQc):
global qf,qfL,qfR,QcL,QcR
# 1と2の間を1に収納
lqf=Qctoqf(lQc)
qfL=[[0.0] * 3 for i in [1] * (nx+1)]
qfR=[[0.0] * 3 for i in [1] * (nx+1)]
for i in range(1,nx-2):
for j in range(3):
dplus_j=lqf[i+1][j]-lqf[i][j]
dminus_j=lqf[i][j]-lqf[i-1][j]
dplus_jp=lqf[i+2][j]-lqf[i+1][j]
dminus_jp=lqf[i+1][j]-lqf[i][j]
qfL[i][j]=lqf[i][j]+1/4*((1-k_muscl)*minmod(dminus_j,dplus_j,b_muscl)+(1+k_muscl)*minmod(dplus_j,dminus_j,b_muscl))
qfR[i][j]=lqf[i+1][j]-1/4*((1-k_muscl)*minmod(dplus_jp,dminus_jp,b_muscl)+(1+k_muscl)*minmod(dminus_jp,dplus_jp,b_muscl))
# 境界内側用
for j in range(3):
dplus_jp=lqf[2][j]-lqf[1][j]
dminus_jp=lqf[1][j]-lqf[0][j]
qfR[0][j]=lqf[1][j]-1/4*((1-k_muscl)*minmod(dplus_jp,dminus_jp,b_muscl)+(1+k_muscl)*minmod(dminus_jp,dplus_jp,b_muscl))
dplus_j=lqf[nx-1][j]-lqf[nx-2][j]
dminus_j=lqf[nx-2][j]-lqf[nx-3][j]
qfL[nx-2][j]=lqf[nx-2][j]+1/4*((1-k_muscl)*minmod(dminus_j,dplus_j,b_muscl)+(1+k_muscl)*minmod(dplus_j,dminus_j,b_muscl))
QcL=qftoQc(qfL)
QcR=qftoQc(qfR)
# 境界外側用(境界は風上)
qfL[0]=lqf[0][:]
QcL[0]=lQc[0][:]
qfR[nx-2]=lqf[nx-1][:]
QcR[nx-2]=lQc[nx-1][:]
# -------------------------------
# -- function minmod --
# -------------------------------
#
# 流速制限関数minmod
#
def minmod(x,y,b):
ans=numpy.sign(x)*max(0,min(abs(x),numpy.sign(x)*y*b))
return ans
# -------------------------------
# -- function qftoQc --
# -------------------------------
#
# 基本量から保存量に変換
#
def qftoQc(qf):
lo_Qc=[[0.0] * 3 for i in [1] * nx]
for i in range(nx):
for j in range(3):
if j ==0:
lo_Qc[i][j]=qf[i][1]
elif j ==1:
lo_Qc[i][j]=qf[i][1]*qf[i][0]
elif j ==2:
lo_Qc[i][j]=(qf[i][2]/(gamma-1)+1.0/2.0*qf[i][1]*(qf[i][0]**2))
return lo_Qc
# -------------------------------
# -- function Qctoqf --
# -------------------------------
#
# 保存量から基本量に変換
#
def Qctoqf(Qc):
lo_qf=[[0.0] * 3 for i in [1] * nx]
for i in range(nx):
for j in range(3):
if j ==0:
lo_qf[i][j]=Qc[i][1]/Qc[i][0]
elif j ==1:
lo_qf[i][j]=Qc[i][0]
elif j ==2:
lo_qf[i][j]=(gamma-1)*(Qc[i][2]-1.0/2.0*Qc[i][0]*((Qc[i][1]/Qc[i][0])**2))
return lo_qf
# -------------------------------
# -- function output_q --
# -------------------------------
#
# x,rho,u,pの出力
#
def output_q(f_name): # テキスト形式で出力
outlist=["x[m] u[m/s] rho[kg/m3] p[Pa]"] # 出力するものの名前
for i in range(len(qf)):
outlist.append(str(x[i])+" "+str(qf[i][0])+" "+str(qf[i][1])+" "+str(qf[i][2]))
outlist='\n'.join(outlist)
with open(dir_name+"/"+f_name,'wt') as f:
f.write(outlist)
# -------------------------------
# -- function cre_dir --
# -------------------------------
#
# ディレクトリの作成
#
def cre_dir(): # フォルダ作成
try:
os.mkdir(dir_name)
except:
pass
# --------------------------
# -- main --
# --------------------------
# --------------------------
# -- preparetion --
# --------------------------
cre_dir()
setup()
# --------------------------
# -- main --
# --------------------------
for k in range(nstep):
print(k)
cal_Q()
qf=Qctoqf(Qc)
#output_q(out_name_front+'{:0=4}'.format(int(k*dt*1000))+out_name_back)
output_q(out_name_front+str(int(k*dt*1000))+out_name_back)