-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSlimPajama_save.py
60 lines (52 loc) · 1.94 KB
/
SlimPajama_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import random
import argparse
import numpy as np
from tqdm import tqdm
from streaming import MDSWriter
from datasets import load_from_disk
from multiprocessing import Process
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)
def make_dir_if_not_ex(path):
if not os.path.exists(path):
print("Make target folder:", path)
os.makedirs(path)
def write_dataset(split, lang):
dataset = load_from_disk(os.path.join(args.tokenized_dir, lang))[split]
out = MDSWriter(
columns={"tokens": "bytes", "set": "str"},
out=os.path.join(args.target_dir, f"{split}", lang),
compression=None
)
indices = range(len(dataset))
if split == "valid":
indices = random.sample(indices, args.eval_seq)
total = 0
for idx in tqdm(indices):
out.write({
"tokens": np.array(dataset[idx]["data"], dtype=np.uint32).tobytes(),
"set": lang
})
total += 1
out.finish()
print(f"Total {lang} for {split}: {total}")
if __name__ == "__main__":
random.seed(42)
np.random.seed(42)
parser = argparse.ArgumentParser()
parser.add_argument("--tokenized_dir", type=str, help="Target directory to save tokenized numpy")
parser.add_argument("--target_dir", type=str, help="Target directory to save tokenized numpy")
parser.add_argument("--eval_seq", type=int, default=500, help="How many sequences to sample for eval for each domain")
args = parser.parse_args()
p_apis = []
make_dir_if_not_ex(os.path.join(args.target_dir))
for split in ["prune"]:#["train", "valid"]:
for lang in ["arxiv", "book", "c4", "common_crawl", "github", "stackexchange", "wikipedia"]:
make_dir_if_not_ex(os.path.join(args.target_dir, f"{split}"))
p = Process(target=write_dataset, args=[split, lang])
p.start()
p_apis.append(p)
for p in p_apis:
p.join()
print("Done.")