-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodel.py
541 lines (478 loc) · 22.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 01 2017
@author: Heshenghuan (heshenghuan@sina.com)
http://github.com/heshenghuan
"""
import os
import sys
import time
import numpy as np
import tensorflow as tf
def init_variable(shape, name=None):
initial = tf.random_uniform(shape, -0.01, 0.01)
return tf.Variable(initial, name=name)
def batch_index(length, batch_size, n_iter=100, shuffle=True):
index = range(length)
rd = int(length / batch_size)
if length % batch_size != 0:
rd += 1
for j in xrange(n_iter):
if shuffle:
np.random.shuffle(index)
for i in xrange(rd):
yield index[i * batch_size: (i + 1) * batch_size]
class linear_chain_CRF():
def __init__(self, feat_size, nb_classes, time_steps,
batch_size=None, templates=1, l2_reg=0.):
self.feat_size = feat_size
self.nb_classes = nb_classes
self.batch_size = batch_size
self.time_steps = time_steps
self.l2_reg = l2_reg
with tf.name_scope('inputs'):
self.X = tf.placeholder(
tf.int32, shape=[None, self.time_steps, templates],
name='X_placeholder')
self.Y = tf.placeholder(
tf.int32, shape=[None, self.time_steps],
name='Y_placeholder')
self.X_len = tf.placeholder(
tf.int32, shape=[None, ], name='X_len_placeholder')
self.keep_prob = tf.placeholder(tf.float32, name='output_dropout')
self.build()
return
def build(self):
with tf.name_scope('weights'):
self.W = tf.get_variable(
shape=[self.feat_size, self.nb_classes],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='weights'
# regularizer=tf.contrib.layers.l2_regularizer(0.001)
)
with tf.name_scope('biases'):
self.b = tf.get_variable(
shape=[self.nb_classes],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='bias'
)
# self.b = tf.Variable(tf.zeros([self.nb_classes], name="bias"))
return
def inference(self, X, X_len, reuse=None):
with tf.name_scope('score'):
# The weight matrix is treated as an embedding matrix
# Using lookup & reduce_sum to complete calculation of unary score
features = tf.nn.embedding_lookup(self.W, X)
feat_vec = tf.reduce_sum(features, axis=2)
feat_vec = tf.reshape(feat_vec, [-1, self.nb_classes])
scores = feat_vec + self.b
# scores = tf.nn.softmax(scores)
scores = tf.reshape(scores, [-1, self.time_steps, self.nb_classes])
return scores
def get_batch_data(self, x, y, l, batch_size, shuffle=True):
for index in batch_index(len(y), batch_size, 1, shuffle):
feed_dict = {
self.X: x[index],
self.Y: y[index],
self.X_len: l[index],
}
yield feed_dict, len(index)
def test_unary_score(self):
return self.inference(self.X, reuse=True)
def loss(self, pred):
with tf.name_scope('loss'):
log_likelihood, self.transition = tf.contrib.crf.crf_log_likelihood(
pred, self.Y, self.X_len)
cost = tf.reduce_mean(-log_likelihood)
reg = tf.nn.l2_loss(self.W) + tf.nn.l2_loss(self.b)
# if self.fine_tuning:
# reg += tf.nn.l2_loss(self.emb_matrix)
cost += reg * self.l2_reg
return cost
def seq_score(self, pred):
with tf.name_scope('seq_score'):
seq_score = tf.contrib.crf.crf_sequence_score(
pred, self.Y, self.X_len, self.transition)
return seq_score
def viterbi_decode(self, num, pred, y_lens, trans_matrix):
"""
Given predicted unary_scores, using viterbi_decode find the best tags
sequence.
"""
labels = []
scores = []
for i in xrange(num):
p_len = y_lens[i]
unary_scores = pred[i][:p_len]
tags_seq, tags_score = tf.contrib.crf.viterbi_decode(
unary_scores, trans_matrix)
labels.append(tags_seq)
scores.append(tags_score)
return (labels, scores)
def accuracy(self, num, labels, y, y_lens):
"""
Count the correct labels num and total labels num.
"""
correct_labels = 0
total_labels = 0
for i in xrange(num):
p_len = y_lens[i]
gold = y[i][:p_len]
tags_seq = labels[i]
correct_labels += np.sum(np.equal(tags_seq, gold))
total_labels += p_len
return (correct_labels, total_labels)
def margin_loss(self, num, labels, scores, y, y_lens, y_scores):
"""
Calculate margin loss value.
"""
value = 0.
for i in xrange(num):
p_len = y_lens[i]
delta = np.sum(np.not_equal(labels[i], y[i][:p_len]))
value += scores[i] + delta - y_scores[i]
return value / num
def run(
self,
train_x, train_y, train_lens,
valid_x, valid_y, valid_lens,
test_x, test_y, test_lens,
FLAGS=None
):
if FLAGS is None:
print "FLAGS ERROR"
sys.exit(0)
self.lr = FLAGS.lr
self.training_iter = FLAGS.train_steps
self.train_file_path = FLAGS.train_data
self.test_file_path = FLAGS.valid_data
self.display_step = FLAGS.display_step
# predication & cost-calculation
pred = self.inference(self.X, self.X_len)
cost = self.loss(pred)
# golden tag sequences' seqscore
y_scores = self.seq_score(pred)
with tf.name_scope('train'):
global_step = tf.Variable(
0, name="tr_global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(
learning_rate=self.lr).minimize(cost, global_step=global_step)
with tf.name_scope('summary'):
if FLAGS.log:
localtime = time.strftime("%Y%m%d-%X", time.localtime())
Summary_dir = FLAGS.log_dir + localtime
info = 'batch{}, lr{}, l2_reg{}'.format(
self.batch_size, self.lr, self.l2_reg)
info += ';' + self.train_file_path + ';' + \
self.test_file_path + ';' + 'Method:linear-chain CRF'
train_acc = tf.placeholder(tf.float32)
train_loss = tf.placeholder(tf.float32)
summary_acc = tf.summary.scalar('ACC ' + info, train_acc)
summary_loss = tf.summary.scalar('LOSS ' + info, train_loss)
summary_op = tf.summary.merge([summary_loss, summary_acc])
valid_acc = tf.placeholder(tf.float32)
valid_loss = tf.placeholder(tf.float32)
summary_valid_acc = tf.summary.scalar('ACC ' + info, valid_acc)
summary_valid_loss = tf.summary.scalar(
'LOSS ' + info, valid_loss)
summary_valid = tf.summary.merge(
[summary_valid_loss, summary_valid_acc])
train_summary_writer = tf.summary.FileWriter(
Summary_dir + '/train')
valid_summary_writer = tf.summary.FileWriter(
Summary_dir + '/valid')
with tf.name_scope('saveModel'):
localtime = time.strftime("%X-%Y-%m-%d", time.localtime())
saver = tf.train.Saver()
save_dir = FLAGS.model_dir + localtime + '/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with tf.Session() as sess:
max_acc, bestIter = 0., 0
if self.training_iter == 0:
saver.restore(sess, FLAGS.restore_model)
print "[+] Model restored from %s" % FLAGS.restore_model
else:
sess.run(tf.initialize_all_variables())
for epoch in xrange(self.training_iter):
for train, num in self.get_batch_data(train_x, train_y, train_lens, self.batch_size):
_, step, trans_matrix, loss, predication, gold_scores = sess.run(
[optimizer, global_step, self.transition, cost, pred, y_scores],
feed_dict=train)
tags_seqs, tags_scores = self.viterbi_decode(
num, predication, train[self.X_len], trans_matrix)
correct, total = self.accuracy(
num, tags_seqs, train[self.Y], train[self.X_len])
acc = float(correct) / total
m_loss = self.margin_loss(
num, tags_seqs, tags_scores, train[self.Y],
train[self.X_len], gold_scores)
if FLAGS.log:
summary = sess.run(summary_op, feed_dict={
train_loss: loss, train_acc: acc})
train_summary_writer.add_summary(summary, step)
print 'Iter {}: mini-batch loss={:.6f}, acc={:.6f}, mloss={:.6f}'.format(step, loss, acc, m_loss)
save_path = saver.save(sess, save_dir, global_step=step)
print "[+] Model saved in file: %s" % save_path
if epoch % self.display_step == 0:
rd, loss, correct, total, m_loss = 0, 0., 0, 0, 0.
for valid, num in self.get_batch_data(valid_x, valid_y, valid_lens, self.batch_size):
trans_matrix, _loss, predication, gold_scores = sess.run(
[self.transition, cost, pred, y_scores], feed_dict=valid)
loss += _loss
tags_seqs, tags_scores = self.viterbi_decode(
num, predication, valid[self.X_len], trans_matrix)
tmp = self.accuracy(
num, tags_seqs, valid[self.Y], valid[self.X_len])
m_loss += self.margin_loss(
num, tags_seqs, tags_scores, valid[self.Y],
valid[self.X_len], gold_scores)
correct += tmp[0]
total += tmp[1]
rd += 1
loss /= rd
acc = float(correct) / total
m_loss /= rd
if acc > max_acc:
max_acc = acc
bestIter = step
if FLAGS.log:
summary = sess.run(summary_valid, feed_dict={
valid_loss: loss, valid_acc: acc})
valid_summary_writer.add_summary(summary, step)
print '----------{}----------'.format(time.strftime("%Y-%m-%d %X", time.localtime()))
print 'Iter {}: valid loss(avg)={:.6f}, acc(avg)={:.6f}, mloss={:.6f}'.format(step, loss, acc, m_loss)
print 'round {}: max_acc={} BestIter={}\n'.format(epoch, max_acc, bestIter)
print 'Optimization Finished!'
# test process
pred_test_y = []
acc, loss, rd = 0., 0., 0
correct_labels, total_labels = 0, 0
for test, num in self.get_batch_data(test_x, test_y, test_lens, self.batch_size, shuffle=False):
trans_matrix, _loss, predication = sess.run(
[self.transition, cost, pred], feed_dict=test)
loss += _loss
rd += 1
tags_seqs, tags_scores = self.viterbi_decode(
num, predication, test[self.X_len], trans_matrix)
tmp = self.accuracy(
num, tags_seqs, test[self.Y], test[self.X_len])
correct_labels += tmp[0]
total_labels += tmp[1]
pred_test_y.extend(tags_seqs)
acc = float(correct_labels) / total_labels
loss /= rd
return pred_test_y, loss, acc
class embedding_CRF(linear_chain_CRF):
def __init__(self, nb_words, emb_dim, emb_matrix, feat_size,
nb_classes, time_steps, fine_tuning=False,
batch_size=None, templates=1, window=1, l2_reg=0.):
self.nb_words = nb_words
self.emb_dim = emb_dim
self.feat_size = feat_size
self.nb_classes = nb_classes
self.batch_size = batch_size
self.time_steps = time_steps
self.l2_reg = l2_reg
self.fine_tuning = fine_tuning
self.window = window
if self.fine_tuning:
self.emb_matrix = tf.Variable(
emb_matrix, dtype=tf.float32, name="embeddings")
else:
self.emb_matrix = tf.constant(
emb_matrix, dtype=tf.float32, name="embeddings")
with tf.name_scope('inputs'):
self.F = tf.placeholder(
tf.int32, shape=[None, self.time_steps, templates],
name='F_placeholder')
self.X = tf.placeholder(
tf.int32, shape=[None, self.time_steps, self.window],
name='X_placeholder'
)
self.Y = tf.placeholder(
tf.int32, shape=[None, self.time_steps],
name='Y_placeholder')
self.X_len = tf.placeholder(
tf.int32, shape=[None, ], name='X_len_placeholder')
self.keep_prob = tf.placeholder(tf.float32, name='output_dropout')
self.build()
return
def build(self):
with tf.name_scope('weights'):
self.W = tf.get_variable(
shape=[self.feat_size, self.nb_classes],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='feat_weights'
# regularizer=tf.contrib.layers.l2_regularizer(0.001)
)
self.T = tf.get_variable(
shape=[self.window * self.emb_dim, self.nb_classes],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='emb_weights'
)
with tf.name_scope('biases'):
self.b = tf.get_variable(
shape=[self.nb_classes],
initializer=tf.truncated_normal_initializer(stddev=0.01),
name='bias'
)
# self.b = tf.Variable(tf.zeros([self.nb_classes], name="bias"))
return
def inference(self, X, F, X_len, reuse=None):
with tf.name_scope('score'):
# The weight matrix is treated as an embedding matrix
# Using lookup & reduce_sum to complete calculation of unary score
features = tf.nn.embedding_lookup(self.W, F)
feat_vec = tf.reduce_sum(features, axis=2)
feat_vec = tf.reshape(feat_vec, [-1, self.nb_classes])
# embedding features
word_vec = tf.nn.embedding_lookup(self.emb_matrix, X)
word_vec = tf.reshape(word_vec, [-1, self.window * self.emb_dim])
scores = feat_vec + tf.matmul(word_vec, self.T) + self.b
# scores = tf.nn.softmax(scores)
scores = tf.reshape(scores, [-1, self.time_steps, self.nb_classes])
return scores
def loss(self, pred):
'''
Cost function.
'''
with tf.name_scope('loss'):
log_likelihood, self.transition = tf.contrib.crf.crf_log_likelihood(
pred, self.Y, self.X_len)
cost = tf.reduce_mean(-log_likelihood)
reg = tf.nn.l2_loss(self.W) + tf.nn.l2_loss(self.T)
reg += tf.nn.l2_loss(self.b)
# if self.fine_tuning:
# reg += tf.nn.l2_loss(self.emb_matrix)
cost += reg * self.l2_reg
return cost
def get_batch_data(self, x, f, y, l, batch_size, shuffle=True):
for index in batch_index(len(y), batch_size, 1, shuffle):
feed_dict = {
self.X: x[index],
self.Y: y[index],
self.F: f[index],
self.X_len: l[index],
}
yield feed_dict, len(index)
def run(
self,
train_x, train_f, train_y, train_lens,
valid_x, valid_f, valid_y, valid_lens,
test_x, test_f, test_y, test_lens,
FLAGS=None
):
if FLAGS is None:
print "FLAGS ERROR"
sys.exit(0)
self.lr = FLAGS.lr
self.training_iter = FLAGS.train_steps
self.train_file_path = FLAGS.train_data
self.test_file_path = FLAGS.valid_data
self.display_step = FLAGS.display_step
# predication & cost-calculation
pred = self.inference(self.X, self.F, self.X_len)
cost = self.loss(pred)
with tf.name_scope('train'):
global_step = tf.Variable(
0, name="tr_global_step", trainable=False)
optimizer = tf.train.AdamOptimizer(
learning_rate=self.lr).minimize(cost, global_step=global_step)
with tf.name_scope('saveModel'):
localtime = time.strftime("%X %Y-%m-%d", time.localtime())
saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)
save_dir = FLAGS.model_dir + localtime + '/'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with tf.name_scope('summary'):
if FLAGS.log:
localtime = time.strftime("%Y%m%d-%X", time.localtime())
Summary_dir = FLAGS.log_dir + localtime
info = 'batch{}, lr{}, l2_reg{}'.format(
self.batch_size, self.lr, self.l2_reg)
info += ';' + self.train_file_path + ';' + \
self.test_file_path + ';' + 'Method:.emb-enhance CRF'
train_acc = tf.placeholder(tf.float32)
train_loss = tf.placeholder(tf.float32)
summary_acc = tf.summary.scalar('ACC ' + info, train_acc)
summary_loss = tf.summary.scalar('LOSS ' + info, train_loss)
summary_op = tf.summary.merge([summary_loss, summary_acc])
valid_acc = tf.placeholder(tf.float32)
valid_loss = tf.placeholder(tf.float32)
summary_valid_acc = tf.summary.scalar('ACC ' + info, valid_acc)
summary_valid_loss = tf.summary.scalar(
'LOSS ' + info, valid_loss)
summary_valid = tf.summary.merge(
[summary_valid_loss, summary_valid_acc])
train_summary_writer = tf.summary.FileWriter(
Summary_dir + '/train')
valid_summary_writer = tf.summary.FileWriter(
Summary_dir + '/valid')
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
max_acc, bestIter = 0., 0
if self.training_iter == 0:
saver.restore(sess, FLAGS.restore_model)
for epoch in xrange(self.training_iter):
for train, num in self.get_batch_data(train_x, train_f, train_y, train_lens, self.batch_size):
_, step, trans_matrix, loss, predication = sess.run(
[optimizer, global_step, self.transition, cost, pred],
feed_dict=train)
tags_seqs, _ = self.viterbi_decode(
num, predication, train[self.X_len], trans_matrix)
correct, total = self.accuracy(
num, tags_seqs, train[self.Y], train[self.X_len])
acc = float(correct) / total
if FLAGS.log:
summary = sess.run(summary_op, feed_dict={
train_loss: loss, train_acc: acc})
train_summary_writer.add_summary(summary, step)
print 'Iter {}: mini-batch loss={:.6f}, acc={:.6f}'.format(step, loss, acc)
saver.save(sess, save_dir, global_step=step)
if epoch % self.display_step == 0:
rd, loss, correct, total = 0, 0., 0, 0
for valid, num in self.get_batch_data(valid_x, valid_f, valid_y, valid_lens, self.batch_size):
trans_matrix, _loss, predication = sess.run(
[self.transition, cost, pred], feed_dict=valid)
loss += _loss
tags_seqs, _ = self.viterbi_decode(
num, predication, valid[self.X_len], trans_matrix)
tmp = self.accuracy(
num, tags_seqs, valid[self.Y], valid[self.X_len])
correct += tmp[0]
total += tmp[1]
rd += 1
loss /= rd
acc = float(correct) / total
if acc > max_acc:
max_acc = acc
bestIter = step
if FLAGS.log:
summary = sess.run(summary_valid, feed_dict={
valid_loss: loss, valid_acc: acc})
valid_summary_writer.add_summary(summary, step)
print '----------{}----------'.format(time.strftime("%Y-%m-%d %X", time.localtime()))
print 'Iter {}: valid loss(avg)={:.6f}, acc(avg)={:.6f}'.format(step, loss, acc)
print 'round {}: max_acc={} BestIter={}\n'.format(epoch, max_acc, bestIter)
print 'Optimization Finished!'
# test process
pred_test_y = []
acc, loss, rd = 0., 0., 0
correct_labels, total_labels = 0, 0
for test, num in self.get_batch_data(test_x, test_f, test_y, test_lens, self.batch_size, shuffle=False):
trans_matrix, _loss, predication = sess.run(
[self.transition, cost, pred], feed_dict=test)
loss += _loss
rd += 1
tags_seqs, tags_scores = self.viterbi_decode(
num, predication, test[self.X_len], trans_matrix)
tmp = self.accuracy(
num, tags_seqs, test[self.Y], test[self.X_len])
correct_labels += tmp[0]
total_labels += tmp[1]
pred_test_y.extend(tags_seqs)
acc = float(correct_labels) / total_labels
loss /= rd
return pred_test_y, loss, acc