-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel1.py
228 lines (178 loc) · 6.29 KB
/
model1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
import datetime
from keras.models import Model
from keras.layers import Input, Conv2D, UpSampling2D, BatchNormalization, Activation
from keras.preprocessing import image
from datagen import gen_data
from utils import generate_random_gap
LOAD_WEIGHTS = False
ITERATIONS = 50000
BATCH_SIZE = 4
SEED = 1
IMG_SHAPE = (352, 352, 1)
IMG_HEIGHT, IMG_WIDTH, IMG_CHAN = IMG_SHAPE
DATA_TYPE = 'DATA_GEN'
def build_model():
input_tensor = Input((None, None, 1))
x = Conv2D(24, 5, strides=2, padding='same')(input_tensor)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(64, 3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(128, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(256, 3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(512, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(512, 3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(256, 3, strides=1, padding='same', )(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D(2)(x)
x = Conv2D(128, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(64, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D(2)(x)
x = Conv2D(32, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(16, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D(2)(x)
x = Conv2D(8, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(4, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = UpSampling2D(2)(x)
x = Conv2D(2, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(1, 3, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
output_tensor = Conv2D(1, 3, padding='same', activation='sigmoid')(x)
return Model(input_tensor, output_tensor)
def data_generator(type='DATA_GEN'):
'''
Generate data in specific type.
DATA_GEN: generate data with random graphics, use small disc as gap, non-meaningful data
DATA_GAP: generate data use small disc as gap on user line-drawings, meaningful data
DATA_THIN: directly read offline data generated using normalization(thinning)
:param type: DATA_GEN, DATA_GAP, DATA_THIN
:return: x_data, y_data
'''
# Use both 352 and 176 could achieve better performance
gap_configs352 = [
[50, 600, 2, 8, 0, 1],
[50, 600, 2, 10, 0, 2],
[1, 2, 5, 15, 0, 3]
]
# gap_configs176 = [
# [50, 200, 1, 4, 0, 1],
# [50, 200, 1, 5, 0, 2],
# [1, 2, 5, 10, 0, 3]
# ]
# gap_configs128 = [
# [50, 200, 2, 4, 0, 1],
# [50, 200, 2, 5, 0, 2],
# [1, 2, 5, 15, 0, 3]
# ]
# gap_configs64 = [
# [50, 200, 1, 4, 0, 1],
# [50, 200, 1, 5, 0, 2],
# [1, 2, 5, 10, 0, 3]
# ]
datagen = image.ImageDataGenerator(
rescale=1 / 255.,
rotation_range=180,
width_shift_range=0.1,
height_shift_range=0.1,
zoom_range=0.2,
horizontal_flip=True,
vertical_flip=True,
fill_mode='reflect'
)
if type == 'DATA_GAP':
raw_generator_352 = datagen.flow_from_directory(
'./data/line',
target_size=(IMG_HEIGHT, IMG_WIDTH),
color_mode='grayscale',
seed=SEED,
class_mode=None,
batch_size=BATCH_SIZE,
shuffle=True,
interpolation='bilinear'
)
# raw_generator_176 = datagen.flow_from_directory(
# './data/line',
# target_size=(IMG_HEIGHT // 2, IMG_WIDTH // 2),
# color_mode='grayscale',
# seed=SEED,
# class_mode=None,
# batch_size=BATCH_SIZE // 2,
# shuffle=True,
# interpolation='bilinear'
# )
while True:
train_y_batch = next(raw_generator_352)
train_x_batch, _ = generate_random_gap(train_y_batch, gap_configs352, SEED)
yield train_x_batch, train_y_batch
elif type == 'DATA_GEN':
while True:
# Size config is in datagen.py
train_y_batch = gen_data(np.random.RandomState(SEED), BATCH_SIZE)
train_x_batch, _ = generate_random_gap(train_y_batch, gap_configs352, SEED)
yield train_x_batch, train_y_batch
elif type == 'DATA_THIN':
raw_generator_x = datagen.flow_from_directory(
'./data/thin',
target_size=(IMG_HEIGHT, IMG_WIDTH),
color_mode='grayscale',
seed=SEED,
class_mode=None,
batch_size=BATCH_SIZE,
shuffle=True,
interpolation='bilinear'
)
raw_generator_y = datagen.flow_from_directory(
'./data/line',
target_size=(IMG_HEIGHT, IMG_WIDTH),
color_mode='grayscale',
seed=SEED,
class_mode=None,
batch_size=BATCH_SIZE,
shuffle=True,
interpolation='bilinear'
)
while True:
yield next(raw_generator_x), next(raw_generator_y)
def train():
model = build_model()
model.summary()
if LOAD_WEIGHTS:
model.load_weights('./weight/model1.h5')
model.compile(loss='MSE', optimizer='Adam')
data = data_generator(DATA_TYPE)
start_time = datetime.datetime.now()
for iteration in range(1, ITERATIONS + 1):
train_y_batch, train_x_batch = next(data)
loss = model.train_on_batch(train_x_batch, train_y_batch)
print('[Time: %s] [Iteration: %d] [Loss: %f]' % (datetime.datetime.now() - start_time, iteration, loss))
if iteration % 200 == 0:
model.save('./weight/model1_%d.h5' % iteration)
model.save('./weight/model1.h5')
if __name__ == "__main__":
train()