-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNNLSTM.py
136 lines (101 loc) · 4.03 KB
/
CNNLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Author: Henry Powell
Institution: SoBots Lab, Institute of Neuroscience and Psychology, University
of Glasgow, UK.
CNN LSTM designed for human movement analysis. Achieved 71% accuracy on NTURGD+B when tested.
"""
import numpy as np
import matplotlib.pyplot as plt
import os
import tensorflow as tf
from tensorflow import keras
import seaborn as sns
sns.set_style("darkgrid")
directory = os.getcwd()
# Load training and test data
# Paths to training label and data .npy files go here
train_data = np.load()
train_labels = np.load()
# Paths to test labels and data .npy files go here
test_data = np.load()
test_labels = np.load()
train_data = keras.utils.normalize(train_data)
test_data = keras.utils.normalize(test_data)
verbose = 1
epochs = 1000
batch_size = 1502
n_timesteps, n_features, n_outputs = train_data.shape[1], train_data.shape[2], train_labels.shape[1]
# Reshape data into time steps of subsequences
n_steps, n_length = 6, 5
train_data = train_data.reshape((train_data.shape[0], n_steps, n_length, n_features))
test_data = test_data.reshape((test_data.shape[0], n_steps, n_length, n_features))
val_data = train_data[:450]
partial_train_data = train_data[450:]
val_labels = train_labels[:450]
partial_train_labels = train_labels[450:]
print(train_data.shape)
print(test_data.shape)
scores = []
def run_training(plot=True):
# Model
model = keras.Sequential()
model.add(keras.layers.TimeDistributed(keras.layers.Conv1D(filters=64,
kernel_size=3,
activation='relu'),
input_shape=(None, n_length, n_features)))
model.add(keras.layers.TimeDistributed(keras.layers.Conv1D(filters=64,
kernel_size=3,
activation='relu'),
input_shape=(None, n_length, n_features)))
model.add(keras.layers.TimeDistributed(keras.layers.Dropout(0.5)))
model.add(keras.layers.TimeDistributed(keras.layers.MaxPooling1D(pool_size=1)))
model.add(keras.layers.TimeDistributed(keras.layers.Flatten()))
model.add(keras.layers.LSTM(100))
model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(100, activation=tf.nn.relu))
model.add(keras.layers.Dense(n_outputs, activation=tf.nn.sigmoid))
model.summary()
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['acc'])
history = model.fit(train_data,
train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(val_data, val_labels),
verbose=verbose)
_, accuracy = model.evaluate(test_data,
test_labels,
batch_size=batch_size,
verbose=verbose)
scores.append(accuracy)
history_dict = history.history
print(history_dict.keys())
acc = history_dict['acc']
val_acc = history_dict['val_acc']
loss = history_dict['loss']
val_loss = history_dict['val_loss']
if plot:
eps = range(1, len(acc) + 1)
plt.plot(eps, loss, label='Training Loss')
plt.plot(eps, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.plot(eps, acc, label='Training Accuracy')
plt.plot(eps, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
n = 1
def run_experiment(n):
for i in range(n):
run_training(plot=True)
print(scores)
print('M={}'.format(np.mean(scores)), 'STD={}'.format(np.std(scores)))
print('Min={}'.format(np.min(scores)), 'Max={}'.format(np.max(scores)))
run_experiment(n)