-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg_Models.py
264 lines (217 loc) · 14.8 KB
/
vgg_Models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Input, Flatten, Dense, Conv2D, MaxPool2D, ZeroPadding2D, Dropout, BatchNormalization
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import layers
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.keras.callbacks import EarlyStopping
################################################################################################
#
# This program continues from the program, "vgg16_intro.py" and "vgg16_SaveModel.py".
# This program demonstrates the architecture of vgg16 and vgg19
# There are two main methods to construct a CNN model.
# Method A: model = Sequential()
# Method B: model = Model(inputs=input, outputs=output)
#
# I prefer Method A for simple CNN. I will use Method B for more complicated CNN.
#
# We also apply early stopping in training
# We can then use "vgg16_LoadModel.py" to load the saved model and predict a single image.
#
################################################################################################
batch_size = 56 # Using Quadro RTX 5000 with 16G video RAM, "64", "128", "192" and "256" are too large.
# Reduce the batch_size if the vidoe RAM is not enough
img_width = 224 # (224, 224, 3) standard input size for VGG model
img_height = 224
# Download the "flower_photos.tgz" from below website, and put into "date_dir"
# /datasets/flowers_photos/daisy/
# /datasets/flowers_photos/dandelion/
# /datasets/flowers_photos/roses/
# /datasets/flowers_photos/sunflowers/
# /datasets/flowers_photos/tulips/
# https://www.tensorflow.org/tutorials/images/classification
# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
data_dir = "E:/datasets/flower_photos/"
############################################################################
# load image from data_dir in batches
datagen = ImageDataGenerator(rescale = 1./255,
validation_split = 0.2) #set validation split
classes = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
num_classes = len(classes)
train_ds = datagen.flow_from_directory(directory=data_dir,
target_size= (img_width, img_height),
classes = classes,
class_mode = 'categorical',
shuffle = True,
batch_size = batch_size,
subset='training')
val_ds = datagen.flow_from_directory(directory = data_dir,
target_size= (img_width, img_height),
classes = classes,
class_mode = 'categorical',
shuffle = False,
batch_size = batch_size,
subset='validation')
############################################################################
# Use VGG16 with pre-trained weights
def VGG16_v1(input_shape = (224,224,3), classes = num_classes):
model = VGG16(include_top=False, input_shape= input_shape, weights='imagenet')
X = model.output
X = Flatten()(X)
X = Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-1')(X)
X = Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-2')(X)
output = Dense(num_classes, activation='softmax', name = 'output_layer')(X)
model = Model(inputs=model.inputs, outputs=output)
# opt = Adam(lr=0.0001)
opt = SGD(lr=0.00005, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model
def VGG16_v2 (input_shape = (224,224,3), classes = num_classes):
model = Sequential()
model.add(Input(input_shape, name = "VGG16_input_layer"))
model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-64a") )
model.add(Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-64b"))
#model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-1"))
model.add(Dropout(0.2))
model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-128a") )
model.add(Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-128b"))
#model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-2"))
model.add(Dropout(0.2))
model.add(Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-256a") )
model.add(Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256b"))
model.add(Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256c"))
#model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-3"))
model.add(Dropout(0.2))
model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-512a") )
model.add(Conv2D(filters=512, kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512b"))
model.add(Conv2D(filters=252,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512c"))
#model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-4"))
model.add(Dropout(0.2))
model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-512d") )
model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512e"))
model.add(Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512f"))
#model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-5"))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-1'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-2'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# compile model
opt = SGD(lr=0.00005, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model
def VGG16_v3 (input_shape = (224,224,3), classes = num_classes):
input = Input(shape = input_shape, name = "VGG16_input_layer")
X = Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-64a")(input)
X = Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-64b")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-1")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-128a")(X)
X = Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-128b")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-2")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-256a")(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256b")(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256c")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-3")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-512a")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512b")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512c")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-4")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-512d")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512e")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512f")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-5")(X)
X = Dropout(0.2)(X)
X = Flatten()(X)
X = Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-1')(X)
X = Dropout(0.5)(X)
X = Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-2')(X)
X = Dropout(0.5)(X)
output = Dense(num_classes, activation='softmax')(X)
model = Model(inputs=input, outputs=output)
# compile model
opt = SGD(lr=0.00002, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model
def VGG16_v3 (input_shape = (224,224,3), classes = num_classes):
input = Input(shape = input_shape, name = "VGG16_input_layer")
X = Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-64a")(input)
X = Conv2D(filters=64,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-64b")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-1")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-128a")(X)
X = Conv2D(filters=128,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-128b")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-2")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-256a")(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256b")(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256c")(X)
X = Conv2D(filters=256,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-256d")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-3")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-512a")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512b")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512c")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name ="conv-512d")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-4")(X)
X = Dropout(0.2)(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512e")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512f")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512g")(X)
X = Conv2D(filters=512,kernel_size=(3,3),padding="same", activation="relu", kernel_initializer = 'he_uniform', name = "conv-512h")(X)
X = MaxPool2D(pool_size=(2,2),strides=(2,2), name="maxpool-5")(X)
X = Dropout(0.2)(X)
X = Flatten()(X)
X = Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-1')(X)
X = Dropout(0.5)(X)
X = Dense(4096, activation='relu', kernel_initializer='he_uniform', name = 'Dense-4096-2')(X)
X = Dropout(0.5)(X)
output = Dense(num_classes, activation='softmax')(X)
model = Model(inputs=input, outputs=output)
# compile model
opt = SGD(lr=0.00002, momentum=0.9)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model
#model = VGG16_v1(input_shape = [img_width,img_height,3], classes = num_classes)
#model = VGG16_v2(input_shape = [img_width,img_height,3], classes = num_classes)
model = VGG16_v3(input_shape = [img_width,img_height,3], classes = num_classes)
#model = VGG19_v2(input_shape = [img_width,img_height,3], classes = num_classes)
model.summary()
############################################################################
# Apply early stopping commands
monitor = EarlyStopping(monitor='val_loss', min_delta =0.001, patience = 5, verbose = 0,
mode = 'auto', restore_best_weights = True )
epochs = 100
history = model.fit(train_ds,
steps_per_epoch = len(train_ds), #batch_size
epochs = epochs,
validation_data = val_ds, #batch_size
validation_steps = len(val_ds),
callbacks=[monitor]
)
############################################################################
# Save a model
model.save("vgg16_v3_t1.h5")
############################################################################
# Save history of training
df = pd.DataFrame(history.history)
filename = 'history_vgg16_v3_t1.csv'
with open (filename, mode ='w') as f:
df.to_csv(f)