-
Notifications
You must be signed in to change notification settings - Fork 7
158 lines (126 loc) · 5.13 KB
/
main.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
name: CI Pipeline
on:
pull_request:
branches:
- main
jobs:
tests:
runs-on: self-hosted
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: setup python
uses: actions/setup-python@v5
with:
python-version: 3.11.8
- name: Install dependencies
run: |
pip install -r requirements-dev.txt
pip install .[mamba-ssm]
# First download before tests as they make use of the downloaded files
- name: Download all files
run: |
python ci/download_all.py
- name: Execute unittests
run: |
CUDA_VISIBLE_DEVICES=-1 pytest --cov-report=html:html_cov --cov-branch --cov-report term --cov=helical ci/
- name: Upload coverage report
uses: actions/upload-artifact@v4
with:
name: coverage-report
path: html_cov/
integration-tests:
needs: tests
runs-on: self-hosted
env:
CUDA_VISIBLE_DEVICES: 0
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: setup python
uses: actions/setup-python@v5
with:
python-version: 3.11.8
# because jobs may not be run in the same order, we need to install the dependencies again
- name: Install helical
run: |
pip install .[mamba-ssm]
# Required to get the data
- name: Download all files
run: |
python ci/download_all.py
- name: Execute Geneformer v1
run: |
python examples/run_models/run_geneformer.py ++model_name="gf-12L-30M-i2048" ++device="cuda"
- name: Fine-tune Geneformer v1
run: |
python examples/fine_tune_models/fine_tune_geneformer.py ++model_name="gf-12L-30M-i2048" ++device="cuda"
- name: Execute Geneformer v2
run: |
python examples/run_models/run_geneformer.py ++model_name="gf-12L-95M-i4096" ++device="cuda"
- name: Fine-tune Geneformer v2
run: |
python examples/fine_tune_models/fine_tune_geneformer.py ++model_name="gf-12L-30M-i2048" ++device="cuda"
- name: Execute scGPT
run: |
python examples/run_models/run_scgpt.py ++device="cuda"
- name: Fine-tune scGPT
run: |
python examples/fine_tune_models/fine_tune_scgpt.py ++device="cuda"
- name: Execute UCE
run: |
python examples/run_models/run_uce.py ++device="cuda"
- name: Fine-tune UCE
run: |
python examples/fine_tune_models/fine_tune_UCE.py ++device="cuda"
- name: Execute Hyena
run: |
python examples/run_models/run_hyena_dna.py ++device="cuda"
- name: Execute Hyena
run: |
python examples/fine_tune_models/fine_tune_hyena_dna.py ++device="cuda"
- name: Execute Helix-mRNA
run: |
python examples/run_models/run_helix_mrna.py ++device="cuda"
- name: Fine-tune Helix-mRNA
run: |
python examples/fine_tune_models/fine_tune_helix_mrna.py ++device="cuda"
- name: Execute Mamba2-mRNA
run: |
python examples/run_models/run_mamba2_mrna.py ++device="cuda"
- name: Fine-tune Mamba2-mRNA
run: |
python examples/fine_tune_models/fine_tune_mamba2_mrna.py ++device="cuda"
- name: Execute Caduceus
run: |
python examples/run_models/run_caduceus.py
- name: Fine-tune Caduceus
run: |
python examples/fine_tune_models/fine_tune_caduceus.py
notebooks:
needs: tests
runs-on: self-hosted
env:
CUDA_VISIBLE_DEVICES: 0
steps:
- name: Checkout repository
uses: actions/checkout@v2
- name: setup python
uses: actions/setup-python@v5
with:
python-version: 3.11.8
# because jobs may not be run in the same order, we need to install the dependencies again
- name: Install helical
run: |
pip install .[mamba-ssm]
- name: Reduce datasets to speedup checks
run: |
sed -i 's/train\[:65%\]/train\[:5%\]/g' ./examples/notebooks/Cell-Type-Annotation.ipynb
sed -i 's/train\[70%:\]/train\[5%:7%\]/g' ./examples/notebooks/Cell-Type-Annotation.ipynb
sed -i 's/get_anndata_from_hf_dataset(ds\[\\"train\\"\])/get_anndata_from_hf_dataset(ds\[\\"train\\"\])[:100]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb
sed -i 's/get_anndata_from_hf_dataset(ds\[\\"test\\"\])/get_anndata_from_hf_dataset(ds\[\\"test\\"\])[:10]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb
sed -i 's/list(np.array(train_dataset.obs\[\\"LVL1\\"].tolist()))/list(np.array(train_dataset.obs\[\\"LVL1\\"].tolist()))[:100]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb
sed -i 's/list(np.array(test_dataset.obs\[\\"LVL1\\"].tolist()))/list(np.array(test_dataset.obs\[\\"LVL1\\"].tolist()))[:10]/g' ./examples/notebooks/Cell-Type-Classification-Fine-Tuning.ipynb
- name: Run Notebooks
run: |
pytest --durations=0 --nbmake ./examples/notebooks/*.ipynb