-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMCC.m
33 lines (28 loc) · 948 Bytes
/
MCC.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
function [weightVector,learningCurve]= ...
MCC(W,initialW,trainInput,trainTarget,stepSizeWeightVector,stepSizeLMS,flagLearningCurve,kernelwidth)
% memeory initialization
[inputDimension,trainSize] = size(trainInput);
if flagLearningCurve
learningCurve = zeros(trainSize,1);
else
learningCurve = [];
end
weightVector = initialW;
biasTerm = 0;
aprioriErr = zeros(trainSize,1);
MCCkernel=1/2/kernelwidth^2;
% training
for n = 1:trainSize
networkOutput = weightVector'*trainInput(:,n) + biasTerm;
aprioriErr(n) = trainTarget(n) - networkOutput;
if n>100
weightVector = weightVector + stepSizeWeightVector*exp(-(aprioriErr(n)^2)*MCCkernel)*aprioriErr(n)*trainInput(:,n);
else
weightVector = weightVector + stepSizeLMS*aprioriErr(n)*trainInput(:,n);
end
if flagLearningCurve
err = weightVector-W;
learningCurve(n) = sum(err.^2);
end
end
return