-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_regression.py
98 lines (75 loc) · 3.01 KB
/
generate_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import hddm
import kabuki
import numpy as np
import scipy
import pandas as pd
from copy import deepcopy
def gen_regression_rts(size, reg_outcomes, p_outlier=0, **params_dict):
i_params = deepcopy(params_dict)
sampled_rts = pd.DataFrame(np.zeros((size, 2)), columns=['rt', 'response'])
for i_sample in xrange(len(sampled_rts)):
#get current params
for p in reg_outcomes:
i_params[p] = params_dict[p][i_sample]
#sample
sampled_rts.ix[i_sample] = hddm.generate.gen_rts(size=1, method='drift', dt=1e-3, **i_params).values
return sampled_rts
def gen_regression_data(params, subj_noise, share_noise = ('a','v','t','st','sz','sv','z', 'v_slope', 'v_inter'), size=50,
subjs=1, exclude_params=(), **kwargs):
"""Generate simulated RTs with random parameters.
:Optional:
params : dict
Parameter names and values. If not
supplied, takes random values.
method : string
method to generate samples
the rest of the arguments are forwarded to kabuki.generate.gen_rand_data
:Returns:
data array with RTs
parameter values
"""
from numpy import inf
# set valid param ranges
bounds = {'a': (0, inf),
'z': (0, 1),
't': (0, inf),
'st': (0, inf),
'sv': (0, inf),
'sz': (0, 1)
}
# Create RT data
group_params = []
for i_subj in range(subjs):
subj_params = kabuki.generate._add_noise({'none': params}, noise=subj_noise, share_noise=share_noise,
check_valid_func=hddm.utils.check_params_valid,
bounds=bounds,
exclude_params=exclude_params)['none']
group_params.append(subj_params)
#generate v
wfpt_params = deepcopy(subj_params)
wfpt_params.pop('v_inter')
effect = wfpt_params.pop('v_slope')
x1 = np.random.randn(size);
x2 = np.random.randn(size);
wfpt_params['v'] = (effect*x1 + np.sqrt(1-effect**2)*x2) + subj_params['v_inter'];
#generate data
subj_data, _ = kabuki.generate.gen_rand_data(gen_regression_rts, wfpt_params,
size=size,
check_valid_func=hddm.utils.check_params_valid,
bounds=bounds, share_noise=share_noise, **kwargs)
#fix data a little bit
subj_data['cov'] = x1
subj_data['subj_idx'] = i_subj
#concatante subj_data to group_data
if i_subj == 0:
data = subj_data
else:
data = pd.concat((data, subj_data), ignore_index=True)
return data, group_params
def gen_reg_params(effect, **kwargs):
params = hddm.generate.gen_rand_params(**kwargs)
params['v_slope'] = effect
params['v_inter'] = 1
params['sv'] = 0
del params['v']
return params