-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
85 lines (59 loc) · 2.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pandas_datareader as web
import datetime as dt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import Dense, Dropout, LSTM
from tensorflow.keras.models import Sequential
crypto_currency = "ADA"
against_currency = "USD"
start = dt.datetime(2016, 1, 1)
end = dt.datetime.now()
data = web.DataReader(f"{crypto_currency}-{against_currency}", "yahoo", start, end)
print(data.head())
# Data
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data["Close"].values.reshape(-1, 1))
prediction_days = 90
future_day = 30
x_train, y_train = [], []
for i in range(prediction_days, len(scaled_data) - future_day):
x_train.append(scaled_data[i - prediction_days: i, 0])
y_train.append(scaled_data[i +future_day, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
# THE AI :( im still bad at ML
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(LSTM(units=50, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=50))
model.add(Dropout(0.2))
model.add(Dense(units=1))
model.compile(optimizer='adam', loss="mean_squared_error")
model.fit(x_train,y_train, epochs=25, batch_size=32)
# Tests
test_start = dt.datetime(2020, 1, 1)
test_end = dt.datetime.now()
test_data = web.DataReader(f"{crypto_currency}-{against_currency}", "yahoo", test_start, test_end)
actual_prices = test_data['Close'].values
total_dataset = pd.concat((data["Close"], test_data["Close"]), axis=0)
model_inputs = total_dataset[len(total_dataset) - len(test_data) - prediction_days :].values
model_inputs = model_inputs.reshape(-1, 1)
model_inputs = scaler.fit_transform(model_inputs)
x_test = []
for i in range(prediction_days, len(model_inputs)):
x_test.append(model_inputs[i - prediction_days :i, 0])
x_test = np.array(x_test)
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
prediction_prices = model.predict(x_test)
prediction_prices = scaler.inverse_transform(prediction_prices)
plt.plot(actual_prices, color="black", label="Actual Prices")
plt.plot(prediction_prices, color="green", label="Predicted Prices")
plt.title(f"{crypto_currency} price prediction")
plt.xlabel("Time")
plt.ylabel("Price")
plt.legend(loc="upper left")
plt.show()