forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPermutations.java
154 lines (132 loc) · 4.21 KB
/
Permutations.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/**
* Here we present two methods (recursive and iterative) of generating all the permutations of a
* list of elements.
*
* <p>Time Complexity: O(n!)
*
* @author William Fiset, Micah Stairs
*/
package com.williamfiset.algorithms.other;
public class Permutations {
/* RECURSIVE APPROACH */
// Generates all the permutations of a sequence of objects
public static void generatePermutations(Object[] sequence) {
if (sequence == null) return;
boolean[] used = new boolean[sequence.length];
int[] picked = new int[sequence.length];
permutations(0, used, picked, sequence);
}
// Recursive method to generate all the permutations of a sequence
// at -> Current element we're considering
// used -> The elements we have currently selected in our permutation
// picked -> The order of the indexes we have selected in our permutation
// sequence -> The array we're generating permutations for
private static void permutations(int at, boolean[] used, int[] picked, Object[] sequence) {
final int N = sequence.length;
// We reached the end, so we've found a valid permutation!
if (at == N) {
// Print permutation
System.out.print("[ ");
for (int i = 0; i < N; i++) System.out.print(sequence[picked[i]] + " ");
System.out.println("]");
} else {
for (int i = 0; i < N; i++) {
// We can only select elements once, so make sure we do
// not select an element which has already been chosen
if (!used[i]) {
// Select this element and track in picked which
// element was chosen for this permutations
used[i] = true;
picked[at] = i;
permutations(at + 1, used, picked, sequence);
// Backtrack (unselect element)
used[i] = false;
}
}
}
}
/* ITERATIVE APPROACH */
// Generates the next ordered permutation in-place (skips repeated permutations).
// Calling this when the array is already at the highest permutation returns false.
// Recommended usage is to start with the smallest permutations and use a do while
// loop to generate each successive permutations (see main for example).
static <T extends Comparable<? super T>> boolean nextPermutation(T[] sequence) {
int first = getFirst(sequence);
if (first == -1) return false;
int toSwap = sequence.length - 1;
while (sequence[first].compareTo(sequence[toSwap]) >= 0) --toSwap;
swap(sequence, first++, toSwap);
toSwap = sequence.length - 1;
while (first < toSwap) swap(sequence, first++, toSwap--);
return true;
}
static <T extends Comparable<? super T>> int getFirst(T[] sequence) {
for (int i = sequence.length - 2; i >= 0; --i)
if (sequence[i].compareTo(sequence[i + 1]) < 0) return i;
return -1;
}
static <T extends Comparable<? super T>> void swap(T[] sequence, int i, int j) {
T tmp = sequence[i];
sequence[i] = sequence[j];
sequence[j] = tmp;
}
public static void main(String[] args) {
Integer[] sequence = {1, 1, 2, 3};
generatePermutations(sequence);
// prints:
// [ 1 1 2 3 ]
// [ 1 1 3 2 ]
// [ 1 2 1 3 ]
// [ 1 2 3 1 ]
// [ 1 3 1 2 ]
// [ 1 3 2 1 ]
// [ 1 1 2 3 ]
// [ 1 1 3 2 ]
// [ 1 2 1 3 ]
// [ 1 2 3 1 ]
// [ 1 3 1 2 ]
// [ 1 3 2 1 ]
// [ 2 1 1 3 ]
// [ 2 1 3 1 ]
// [ 2 1 1 3 ]
// [ 2 1 3 1 ]
// [ 2 3 1 1 ]
// [ 2 3 1 1 ]
// [ 3 1 1 2 ]
// [ 3 1 2 1 ]
// [ 3 1 1 2 ]
// [ 3 1 2 1 ]
// [ 3 2 1 1 ]
// [ 3 2 1 1 ]
String[] alpha = {"A", "B", "C", "D"};
do {
System.out.println(java.util.Arrays.toString(alpha));
// Loop while alpha is not at its highest permutation ordering
} while (nextPermutation(alpha));
// prints:
// [A, B, C, D]
// [A, B, D, C]
// [A, C, B, D]
// [A, C, D, B]
// [A, D, B, C]
// [A, D, C, B]
// [B, A, C, D]
// [B, A, D, C]
// [B, C, A, D]
// [B, C, D, A]
// [B, D, A, C]
// [B, D, C, A]
// [C, A, B, D]
// [C, A, D, B]
// [C, B, A, D]
// [C, B, D, A]
// [C, D, A, B]
// [C, D, B, A]
// [D, A, B, C]
// [D, A, C, B]
// [D, B, A, C]
// [D, B, C, A]
// [D, C, A, B]
// [D, C, B, A]
}
}