forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrixPower.java
123 lines (98 loc) · 3.16 KB
/
MatrixPower.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/**
* Raise an nxn square matrix to a certain power p.
*
* <p>Time Complexity: O(n^3log(p))
*
* @author William Fiset, william.alexandre.fiset@gmail.com
*/
package com.williamfiset.algorithms.linearalgebra;
public class MatrixPower {
static long[][] matrixDeepCopy(long[][] M) {
final int N = M.length;
long[][] newMatrix = new long[N][N];
for (int i = 0; i < N; i++) newMatrix[i] = M[i].clone();
return newMatrix;
}
// Perform matrix multiplication, O(n^3)
static long[][] squareMatrixMult(long[][] m1, long[][] m2) {
final int N = m1.length;
long[][] newMatrix = new long[N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
// Overflow can happen here, watch out!
newMatrix[i][j] = newMatrix[i][j] + m1[i][k] * m2[k][j];
return newMatrix;
}
// Raise a matrix to the pth power. If p is negative
// return null and if p is zero return the identity.
// NOTE: Make sure the matrix is a square matrix and
// also watch out for overflow as the numbers climb quickly!
static long[][] matrixPower(long[][] matrix, long p) {
if (p < 0) return null;
final int N = matrix.length;
long[][] newMatrix = null;
// Return identity matrix
if (p == 0) {
newMatrix = new long[N][N];
for (int i = 0; i < N; i++) newMatrix[i][i] = 1L;
} else {
long[][] P = matrixDeepCopy(matrix);
while (p > 0) {
if ((p & 1L) == 1L) {
if (newMatrix == null) newMatrix = matrixDeepCopy(P);
else newMatrix = squareMatrixMult(newMatrix, P);
}
// Repeatedly square P every loop, O(n^3)
P = squareMatrixMult(P, P);
p >>= 1L;
}
}
return newMatrix;
}
public static void main(String[] args) {
long[][] matrix = {{2}};
System.out.println(matrixPower(matrix, 0)[0][0]); // 1
System.out.println(matrixPower(matrix, 1)[0][0]); // 2
System.out.println(matrixPower(matrix, 2)[0][0]); // 4
System.out.println(matrixPower(matrix, 3)[0][0]); // 8
System.out.println(matrixPower(matrix, 4)[0][0]); // 16
System.out.println(matrixPower(matrix, 5)[0][0]); // 32
System.out.println(matrixPower(matrix, 6)[0][0]); // 64
long[][] matrix2 = {
{1, 2},
{3, 4}
};
long[][] result = matrixPower(matrix2, 5);
print2DMatrix(result);
// prints:
// [1069, 1558]
// [2337, 3406]
result = matrixPower(matrix2, 23);
print2DMatrix(result);
// prints:
// [14853792659417413, 21648320074827046]
// [32472480112240569, 47326272771657982]
long[][] identity = {
{1, 0, 0, 0, 0, 0},
{0, 1, 0, 0, 0, 0},
{0, 0, 1, 0, 0, 0},
{0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, 1, 0},
{0, 0, 0, 0, 0, 1}
};
result = matrixPower(identity, 987654321987654321L);
print2DMatrix(result);
// prints:
// [1, 0, 0, 0, 0, 0]
// [0, 1, 0, 0, 0, 0]
// [0, 0, 1, 0, 0, 0]
// [0, 0, 0, 1, 0, 0]
// [0, 0, 0, 0, 1, 0]
// [0, 0, 0, 0, 0, 1]
}
static void print2DMatrix(long[][] M) {
for (long[] m : M) System.out.println(java.util.Arrays.toString(m));
System.out.println();
}
}