forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLine.java
111 lines (91 loc) · 3.04 KB
/
Line.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/**
* A custom infinite line class that provides additional functionality beyond Java's Line2D.
*
* @author Thomas Finn Lidbetter
*/
package com.williamfiset.algorithms.geometry;
import static java.lang.Math.*;
import java.awt.geom.Point2D;
public class Line {
// The internal representation of a line is
// in general form which is: ax + by = c
private double a, b, c;
// A very same epsilon value used as a threshold for double equality
private static final double EPS = 0.0000001;
// Construct a line given a line segment
public Line(Point2D p1, Point2D p2) {
this(p1.getX(), p1.getY(), p2.getX(), p2.getY());
}
// Construct a line given a line segment as (x1, y1), (x2, y2)
public Line(double x1, double y1, double x2, double y2) {
a = y1 - y2;
b = x2 - x1;
c = x2 * y1 - x1 * y2;
normalise();
}
// Constructs a line from a slope and a point
public static Line slopePointToLine(double slope, Point2D pt) {
Point2D p2 = null;
if (slope == Double.POSITIVE_INFINITY || slope == Double.NEGATIVE_INFINITY) {
p2 = new Point2D.Double(pt.getX(), pt.getY() + 1);
} else {
p2 = new Point2D.Double(pt.getX() + 1, pt.getY() + slope);
}
return new Line(pt, p2);
}
// Normalize the line in general form
public void normalise() {
if (abs(b) < EPS) {
c /= a;
a = 1;
b = 0;
} else {
a = (abs(a) < EPS) ? 0 : a / b;
c /= b;
b = 1;
}
}
// Given a line segment this method finds the line which goes
// through the middle of the segment and cuts it in half.
public static Line getPerpBisector(double x1, double y1, double x2, double y2) {
// Find middle point of segment
Point2D middle = new Point2D.Double((x1 + x2) / 2.0, (y1 + y2) / 2.0);
// The slope perpendicular to (y2-y1)/(x2-x1) is the negative
// reciprocal or -(x2-x1)/(y2-y1) = (x1-x2)/(y2-y1)
double perpSlope = (x1 - x2) / (y2 - y1);
if (abs(y2 - y1) < EPS) perpSlope = Double.POSITIVE_INFINITY;
else if (abs(x1 - x2) < EPS) perpSlope = 0;
return slopePointToLine(perpSlope, middle);
}
// Finds the intersection point of two infinite lines
// and returns null if line1 and line2 are parallel
public static Point2D intersection(Line l1, Line l2) {
l1.normalise();
l2.normalise();
// Lines are parallel
if (abs(l1.a - l2.a) < EPS && abs(l1.b - l2.b) < EPS) return null;
double x = Double.NaN, y = Double.NaN;
if (abs(l1.b) < EPS) {
x = l1.c / l1.a;
y = (l2.c - l2.a * x) / l2.b;
} else if (abs(l2.b) < EPS) {
x = l2.c / l2.a;
y = (l1.c - l1.a * x) / l1.b;
} else if (abs(l1.a) < EPS) {
y = l1.c / l1.b;
x = (l2.c - l2.b * y) / l2.a;
} else if (abs(l2.a) < EPS) {
y = l2.c / l2.b;
x = (l1.c - l1.b * y) / l1.a;
} else {
x = (l1.c - l2.c) / (l1.a - l2.a);
y = (l1.c - l1.a * x) / l1.b;
}
return new Point2D.Double(x, y);
}
// Get a printable representation of a this Line
@Override
public String toString() {
return a + "x + " + b + "y = " + c;
}
}