-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathHeartGPT_finetuning.py
321 lines (249 loc) · 10.5 KB
/
HeartGPT_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import torch
import torch.nn as nn
from torch.nn import functional as F
import scipy.io
import numpy as np
from sklearn.model_selection import train_test_split
# Harry Davies 19_09_2024
# The following code is adapted from a tutorial by Andrej Kapathy, available at https://github.com/karpathy/ng-video-lecture
# The explaination behind this code and the model files can be found in the paper "Interpretable Pre-Trained Transformers for Heart Time-Series Data"
# available at https://arxiv.org/abs/2407.20775
model_config = 'ECG_PT' #switch between 'ECG_PT' and 'PPG_PT'
eval_interval = 50
save_interval = 20000
max_iters = 5000
eval_iters = 50
batch_size = 128 # sequences we process in parellel
block_size = 500 # this is context length
n_embd = 64
n_head = 8
n_layer = 8
dropout = 0.2
learning_rate = 3e-04
model_path_ppg = "D:/HeartGPTModels/PPGPT_500k_iters.pth"
model_path_ecg = "D:/HeartGPTModels/ECGPT_560k_iters.pth"
model_path_finetune = "D:/HeartGPTModels/HeartGPT_finetune_example.pth"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if model_config == 'PPG_PT':
vocab_size = 102 #102 for PPGPT, 101 for ECGPT
model_path = model_path_ppg
elif model_config == 'ECG_PT':
vocab_size = 101
model_path = model_path_ecg
# load in the data, in our case data was originally prepared in matlab
# original fine tuning data for AFib had training data (X) dimensions of Nx500, and label dimensions (Y) of Nx2.
# For afib pne of the labels in Y was subject number, and used to exclude subjects during cross-validation. The first of the 2 values was the AF class of 0 or 1.
# For beat detection fine tuning, training data (X) had dimensions of Nx500, and label dimenions (Y) of Nx500, where 0 corresponded to no beat, and 1 was labelled at the position of a beat.
data_load = scipy.io.loadmat('D:/training_data.mat')
X = data_load['rounded_output_store']
y = data_load['label_store']
# Get the permutation of indices
perm = np.random.permutation(X.shape[0])
# Shuffle X and y
X_shuffled = X[perm]
y_shuffled = y[perm]
# split into train and test
trainX, testX, trainy, testy = train_test_split(X_shuffled, y_shuffled, test_size=0.1, random_state=10)
def get_batch_AF(split):
dataX = trainX
datay = trainy
ix = torch.randint(len(dataX), (batch_size,))
x = torch.stack([dataX[i,:] for i in ix])
y = torch.stack([datay[i,0] for i in ix])
y = y.clamp(0,1)
#for AFib, label y is one value of either 0 or 1
x, y = x.to(device), y.to(device)
return x, y
def get_batch_beat(split):
dataX = trainX if split == 'train' else testX
datay = trainy if split == 'train' else testy
ix = torch.randint(len(dataX), (batch_size,))
x = torch.stack([dataX[i,:] for i in ix])
y = torch.stack([datay[i,:] for i in ix])
# labels in this case are same dimension as input, but still between 0 and 1
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss_AF():
out_loss = {}
out_acc = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
accuracy_store = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch_AF(split)
logits = model(X, Y)
Y = Y.float()
logits_reshaped = logits.reshape(-1)
logits_reshaped = logits_reshaped.clamp(0,1)
loss = criterion(logits_reshaped,Y)
logits_reshaped_val = (logits_reshaped > 0.5).float()
accuracy = (logits_reshaped_val == Y).float().mean()
accuracy_store[k] = accuracy.item()
losses[k] = loss.item()
out_loss[split] = losses.mean()
out_acc[split] = accuracy_store.mean()
model.train()
return out_loss, out_acc
@torch.no_grad()
def estimate_loss_beat():
out_loss = {}
out_acc = {}
model.eval()
for split in ['train', 'val']:
losses = torch.zeros(eval_iters)
accuracy_store = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch_beat(split)
logits = model(X, Y)
Y = Y.float()
logits_reshaped = logits.reshape(-1)
y_reshaped = Y.reshape(-1)
loss = criterion(logits_reshaped,y_reshaped)
# Calculate true positives
logits_reshaped_val = (logits_reshaped > 0.5).float()
y_reshaped_val = (y_reshaped > 0.5).float()
true_positives = (logits_reshaped_val * y_reshaped_val).sum()
# Calculate the total number of positive predictions
total_positives = logits_reshaped_val.sum()
# Calculate the percentage of true positives
percentage_true_positives = true_positives / total_positives if total_positives != 0 else 0
accuracy_store[k] = percentage_true_positives.item()
losses[k] = loss.item()
out_loss[split] = losses.mean()
out_acc[split] = accuracy_store.mean()
model.train()
return out_loss, out_acc
#model definition
class Head(nn.Module):
def __init__(self, head_size, mask=True):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.mask = mask
self.register_buffer('tril', torch.tril(torch.ones((block_size,block_size))))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C**-0.5
if self.mask:
wei = wei.masked_fill(self.tril[:T,:T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size, mask=True):
super().__init__()
self.heads = nn.ModuleList([Head(head_size, mask=mask) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embd, n_head, mask=True):
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size, mask=mask)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class NewHead(nn.Module):
def __init__(self, n_embd):
super().__init__()
# feature extraction, patterns going from 64 dim to 1
self.linear1 = nn.Sequential(nn.Linear(n_embd,1))
self.SigM1 = nn.Sigmoid()
def forward(self, x):
x = self.linear1(x)
#x1 = x1[:,-1,:] #for classification problems (e.g AFib) you need just the last value, for beat detection you need all 500.
x = self.SigM1(x)
return x
class Heart_GPT_FineTune(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(vocab_size,n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
# mask option in blocks allows you to unmask the last layer if set to False
self.blocks = nn.Sequential(*[Block(n_embd, n_head = n_head) for _ in range(n_layer - 1)] + [Block(n_embd, n_head = n_head, mask=True)])
self.ln_f = nn.LayerNorm(n_embd)
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=device))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
return logits
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
# for training
model = Heart_GPT_FineTune()
# load base model
model.load_state_dict(torch.load(model_path))
# freeze base model
for param in model.parameters():
param.requires_grad = False
#set final linear layer to new linear layer
model.lm_head = NewHead(n_embd)
# make sure new linear layer is trainable
for param in model.lm_head.parameters():
param.requires_grad = True
# make sure last layer norm is trainable
for param in model.ln_f.parameters():
param.requires_grad = True
last_block = model.blocks[-1] # Get the last block
# make sure all of last block is trainable
for param in last_block.parameters():
param.requires_grad = True
m = model.to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.AdamW(m.parameters(), lr=learning_rate)
for iter in range(max_iters):
#if you want to evaluate loss throughout fine tuning
if iter % eval_interval == 0:
losses, accuracies = estimate_loss_beat()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
print(f"step {iter}: train accuracy {accuracies['train']:.4f}, val accuracy {accuracies['val']:.4f}")
xb, yb = get_batch_beat('train')
logits = m(xb, yb)
yb = yb.float()
logits_reshaped = logits.reshape(-1)
#logits_reshaped = logits_reshaped.clamp(0,1) clamping could be required
yb_reshaped = yb.reshape(-1)
loss = criterion(logits_reshaped,yb_reshaped)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
torch.save(model.state_dict(), model_path_finetune)