-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBME280.cpp
222 lines (180 loc) · 9 KB
/
BME280.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include "BME280.hpp"
#include <stdio.h>
#include <string.h>
#include "usbd_cdc_if.h"
// set oversampling of pressure to BME280
void BME280_set_osr_p(bme280_settings *BME280, uint8_t set_value){
BME280->osr_p = set_value;
uint8_t setting_value = BME280->mode|(BME280->osr_p<<2)|(BME280->osr_t<<5);
uint8_t setting_2[] = {0xF4, setting_value};
HAL_I2C_Master_Transmit(&hi2c2, BME280_ADDR, setting_2, 2, 1);
}
// set oversampling of temperature to BME280
void BME280_set_osr_t(bme280_settings *BME280, uint8_t set_value){
BME280->osr_t = set_value;
uint8_t setting_value = BME280->mode|(BME280->osr_p<<2)|(BME280->osr_t<<5);
uint8_t setting_2[] = {0xF4, setting_value};
HAL_I2C_Master_Transmit(&hi2c2, BME280_ADDR, setting_2, 2, 1);
}
// set oversampling of humidity to BME280
void BME280_set_osr_h(bme280_settings *BME280, uint8_t set_value){
BME280->osr_h = set_value;
uint8_t setting_value = BME280->mode|(BME280->osr_p<<2)|(BME280->osr_t<<5);
uint8_t setting_2[] = {0xF4, setting_value};
HAL_I2C_Master_Transmit(&hi2c2, BME280_ADDR, setting_2, 2, 1);
}
void BME280_setting(struct bme280_settings *BME280){
BME280->osr_p = 1;
BME280->osr_t = 1;
BME280->osr_h = 1;
BME280->mode = 3;
}
void BME280_write_setting(bme280_settings *BME280){
/* register 0xF2
* bit 2, 1, 0: oversampling of humidity data
*/
uint8_t setting_1[] = {0xF2, BME280->osr_h};
HAL_I2C_Master_Transmit(&hi2c2, BME280_ADDR, setting_1, 2, 1);
/* register 0xF4
* bit 7, 6, 5: oversampling of temperature data
* bit 4, 3, 2: oversampling of pressure data
* bit 1, 0: mode: 0:sleep 1: forced mode 2: normal mode
*/
uint8_t setting_value = BME280->mode|(BME280->osr_p<<2)|(BME280->osr_t<<5);
uint8_t setting_2[] = {0xF4, setting_value};
HAL_I2C_Master_Transmit(&hi2c2, BME280_ADDR, setting_2, 2, 1);
}
// init BME280
void BME280_init(bme280_dev *BME280){
BME280_setting(&BME280->settings);
BME280_write_setting(&BME280->settings);
}
//read non-compensate data
void BME280_read_sensor(bme280_sensor_data *BME280){
uint8_t tmp[10];
HAL_StatusTypeDef ret;
//read H
ret = HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xFD, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->humidity = (tmp[0]<<8) | tmp[1];
check_HAL_status(ret, 0xFD);
//read P
ret = HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xF7, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 3, 100);
BME280->pressure = (tmp[0]<<12) | (tmp[1]<<4) | (tmp[2]>>4);
check_HAL_status(ret, 0xF7);
//read T
ret = HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xFA, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 3, 100);
BME280->temperature = (tmp[0]<<12) | (tmp[1]<<4) | (tmp[2]>>4);
check_HAL_status(ret, 0xFA);
}
//read calib data
void BME280_read_calib_data(bme280_calib_data *BME280){
uint8_t tmp[10];
HAL_StatusTypeDef ret;
// read temperature calib data
ret = HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x88, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_T1 = (tmp[1]<<8) | tmp[0];HAL_Delay(10);
ret = HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x8A, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_T2 = (tmp[1]<<8) | tmp[0];HAL_Delay(10);
ret = HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x8C, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_T3 = (tmp[1]<<8) | tmp[0];HAL_Delay(10);
char DEBUG_cmd[300] = "";
sprintf(DEBUG_cmd, "t1: %.2f t2: %.2f t3: %.2f\r\n", BME280->dig_T1, BME280->dig_T2, BME280->dig_T3);
CDC_Transmit_FS((uint8_t*)DEBUG_cmd, strlen(DEBUG_cmd));
// read pressure calib data
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x8E, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P1 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x90, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P2 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x92, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P3 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x94, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P4 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x96, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P5 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x98, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P6 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x9A, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P7 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x9C, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P8 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0x9E, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_P9 = (tmp[1]<<8) | tmp[0];
// read humidity calib data
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xA1, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 1, 100);
BME280->dig_H1 = tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xE1, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_H2 = (tmp[1]<<8) | tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xE3, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 1, 100);
BME280->dig_H3 = tmp[0];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xE4, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_H4 = (tmp[0]<<4) | tmp[1];
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xE5, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 2, 100);
BME280->dig_H5 = (tmp[1]<<4) | (tmp[0]>>4);
HAL_I2C_Mem_Read(&hi2c2, (uint8_t)BME280_ADDR, 0xE7, I2C_MEMADD_SIZE_8BIT, (uint8_t*)tmp, 1, 100);
BME280->dig_H6 = tmp[0];
}
// read non-compensate data and calib data and calculate compensate data
void BME280_read(bme280_dev *BME280){
BME280_read_sensor(&BME280->sensor_data);
BME280_read_calib_data(&BME280->calib_data);
BME280_compensate_T(&BME280->sensor_data, &BME280->calib_data, &BME280->compensated_sensor_data);
BME280_compensate_P(&BME280->sensor_data, &BME280->calib_data, &BME280->compensated_sensor_data);
BME280_compensate_H(&BME280->sensor_data, &BME280->calib_data, &BME280->compensated_sensor_data);
}
void BME280_print(struct bme280_sensor_data *compensated_sensor_data){
char DEBUG_cmd[300] = "";
sprintf(DEBUG_cmd, "BME_H: %.2f\r\n", compensated_sensor_data->humidity);
CDC_Transmit_FS((uint8_t*)DEBUG_cmd, strlen(DEBUG_cmd));
}
//calculate compensate temperature
void BME280_compensate_T(bme280_sensor_data *sensor_data, bme280_calib_data *calib_data, bme280_sensor_data *compensated_sensor_data){
double var1, var2;
var1 = (((double)sensor_data->temperature)/16384.0 - ((double)calib_data->dig_T1)/1024.0) * ((double)calib_data->dig_T2);
var2 = ((((double)sensor_data->temperature)/131072.0 - ((double)calib_data->dig_T1)/8192.0) * (((double)sensor_data->temperature)/131072.0 - ((double) calib_data->dig_T1)/8192.0)) * ((double)calib_data->dig_T3);
calib_data->t_fine = (int32_t)(var1 + var2);
compensated_sensor_data->temperature = (var1 + var2) / 5120.0;
char DEBUG_cmd[300] = "";
sprintf(DEBUG_cmd, "var1: %.2f var2: %.2f temperature: %.2f\r\n", var1, var2, compensated_sensor_data->temperature);
CDC_Transmit_FS((uint8_t*)DEBUG_cmd, strlen(DEBUG_cmd));
}
//calculate compensate pressure
void BME280_compensate_P(bme280_sensor_data *sensor_data, bme280_calib_data *calib_data, bme280_sensor_data *compensated_sensor_data){
double var1, var2;
double p;
var1 = ((double)calib_data->t_fine/2.0) - 64000.0;
var2 = var1 * var1 * ((double)calib_data->dig_P6) / 32768.0;
var2 = var2 + var1 * ((double)calib_data->dig_P5) * 2.0;
var2 = (var2/4.0)+(((double)calib_data->dig_P4) * 65536.0);
var1 = (((double)calib_data->dig_P3) * var1 * var1 / 524288.0 + ((double)calib_data->dig_P2) * var1) / 524288.0;
var1 = (1.0 + var1 / 32768.0)*((double)calib_data->dig_P1);
if (var1 == 0.0){
return; // avoid exception caused by division by zero
}
p = 1048576.0 - (double)sensor_data->pressure;
p = (p - (var2 / 4096.0)) * 6250.0 / var1;
var1 = ((double)calib_data->dig_P9) * p * p / 2147483648.0;
var2 = p * ((double)calib_data->dig_P8) / 32768.0;
p = p + (var1 + var2 + ((double)calib_data->dig_P7)) / 16.0;
compensated_sensor_data->pressure = p;
}
//calculate compensate humidity
void BME280_compensate_H(bme280_sensor_data *sensor_data, bme280_calib_data *calib_data, bme280_sensor_data *compensated_sensor_data){
double var_H;
var_H = (((double)calib_data->t_fine) - 76800.0);
var_H = (sensor_data->humidity - (((double)calib_data->dig_H4) * 64.0 + ((double)calib_data->dig_H5) / 16384.0 *
var_H)) * (((double)calib_data->dig_H2) / 65536.0 * (1.0 + ((double)calib_data->dig_H6) / 67108864.0 * var_H * (1.0 + ((double)calib_data->dig_H3) / 67108864.0 * var_H)));
var_H = var_H * (1.0 - ((double)calib_data->dig_H1) * var_H / 524288.0);
if (var_H > 100.0)
var_H = 100.0;
else if (var_H < 0.0)
var_H = 0.0;
compensated_sensor_data->humidity = var_H;
}
void check_HAL_status(HAL_StatusTypeDef ret, uint8_t address){
char DEBUG_cmd[50] = {};
if(ret != HAL_OK){
strncpy(DEBUG_cmd, "", sizeof(DEBUG_cmd));
sprintf(DEBUG_cmd, "BME address %d don't receive data.\r\n", address);
CDC_Transmit_FS((uint8_t*)DEBUG_cmd, strlen(DEBUG_cmd));
}
}