-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeom_utils.py
42 lines (38 loc) · 834 Bytes
/
geom_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import cv2
import matplotlib.pyplot as plt
import numpy as np
from torchvision import utils
def compute_jacobian(f, z, h=1e-5):
fz = f(z).squeeze()
z = z.squeeze()
n = fz.size()
d = z.size()
J = torch.zeros(tuple(n) + tuple(d))
#for i in range(d):
# zh = z.copy()
# zh[i] += h
# fzh = f(zh).squeeze()
# J[:, i] = (fzh - fz) / h
return J
def show_img(currx):
utils.save_image(
currx,
f"test.png",
nrow=1,
normalize=True,
range=(-1, 1),
)
plt.imshow(cv2.imread('test.png')[:, :, ::-1])
plt.show()
def load_obama():
im = cv2.imread("obama.jpg")
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
im = np.swapaxes(im,1,2)
im = np.swapaxes(im,0,1)
im = torch.from_numpy(im)
im = torch.unsqueeze(im,0)
im = im.float()
im = 2 * im / 255
im = im - 1
return im