-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathld_continuous.py
executable file
·234 lines (190 loc) · 7.94 KB
/
ld_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/env python
import argparse, sys
# import math, time, re
import numpy as np
from scipy import stats
from argparse import RawTextHelpFormatter
__author__ = "Colby Chiang (cchiang@genome.wustl.edu)"
__version__ = "$Revision: 0.0.1 $"
__date__ = "$Date: 2015-07-09 11:25 $"
# --------------------------------------
# define functions
def get_args():
parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description="\
ld_continuous.py\n\
author: " + __author__ + "\n\
version: " + __version__ + "\n\
description: continuous ld")
parser.add_argument('-i', '--input', metavar='VCF', dest='vcf_in', type=argparse.FileType('r'), default=None, help='VCF input [stdin]')
parser.add_argument('-v', '--variants', metavar='FILE', dest='variants_file', type=argparse.FileType('r'), default=None, required=False, help='list of variants to include')
parser.add_argument('-s', '--samples', metavar='FILE', dest='samples_file', type=argparse.FileType('r'), default=None, required=False, help='list of samples to include')
parser.add_argument('-f', '--field', metavar='STR', dest='field', default='GT', help='specify genotyping format field [GT]')
parser.add_argument('-a', '--alg', metavar='STR', dest='alg', required=True, type=str, help="LD algorithm ('r', 'r2')")
parser.add_argument('-I', '--index', metavar='STR', dest='index', required=False, type=str, help="get LD of each variant against a single index variant")
parser.add_argument('-l', '--labels', dest='labels', required=False, action='store_true', help='attach labels to LD matrix')
parser.add_argument('-c', '-columns', dest='columns', required=False, action='store_true', help='display output in column (rather than matrix) format')
# parser.add_argument('-c', '--covar', metavar='FILE', dest='covar', type=argparse.FileType('r'), default=None, required=True, help='tab delimited file of covariates')
# parser.add_argument('-v', '--max_var', metavar='FLOAT', dest='max_var', type=float, default=0.1, help='maximum genotype variance explained by covariates for variant to PASS filtering [0.1]')
# parse the arguments
args = parser.parse_args()
# if no input, check if part of pipe and if so, read stdin.
if args.vcf_in == None:
if sys.stdin.isatty():
parser.print_help()
exit(1)
else:
args.vcf_in = sys.stdin
# send back the user input
return args
# primary function
def ld_continuous(vcf_in, var_list, samp_set, field, alg, index_var, labels, columns):
X = {} # dict of genotypes for each sample, key is variant id
# var_ids = []
samp_cols = []
if len(var_list):
has_var_list = True
else:
has_var_list = False
for line in vcf_in:
if line[:2] == '##':
continue
v = line.rstrip().split('\t')
if line[0] == "#":
for i in xrange(9,len(v)):
if v[i] in samp_set or len(samp_set) == 0:
samp_cols.append(i)
continue
if has_var_list:
if v[2] not in var_list:
continue
else:
var_list.append(v[2])
var_id = v[2]
# get field index
fmt = v[8].split(':')
field_idx = -1
for i in xrange(len(fmt)):
if fmt[i] == field:
field_idx = i
break
# if field_idx == -1:
# sys.stderr.write("Format field '%s' not found for variant %s\n" % (field, v[2]))
# exit(1)
# read the genotypes
if field == 'GT' or field_idx == -1:
gt_list = []
for i in samp_cols:
gt_str = v[i].split(':')[0]
if '.' in gt_str:
gt_list.append(-1)
continue
sep = '/'
if sep not in gt_str:
sep = '|'
gt_list.append(sum(map(int, gt_str.split(sep))))
X[var_id] = gt_list
else:
gt_list = []
for i in samp_cols:
gt_str = v[i].split(':')[field_idx]
# if no info for the field, fall back to regular genotype
if gt_str == '.':
gt_list.append(-1)
else:
gt_list.append(float(gt_str))
X[var_id] = gt_list
if len(var_list)==0:
var_list = X.keys()
if len(var_list) != len(X):
sys.stderr.write("Warning, missing variants\n")
exit(1)
if index_var is None:
# empty array of r values (correlation)
R = [[0.0] * len(var_list) for i in xrange(len(var_list))]
for i in xrange(len(var_list)):
for j in xrange(i,len(var_list)):
# extract the variant pair from the dictionary
var_pair = np.array([X[var_list[i]], X[var_list[j]]])
# print var_pair
# calculate regression
(slope, intercept, r_value, p_value, std_err) = stats.linregress(var_pair)
# print 'r_value:', r_value
R[i][j] = r_value
R[j][i] = r_value
# print var_list[i], var_list[j], r_value
# print output
# in column format
if columns:
for i in xrange(len(R)):
for j in xrange(i, len(R)):
if alg == 'r':
ld = R[i][j]
elif alg == 'r2':
ld = R[i][j] **2
print '\t'.join(map(str, (var_list[i], var_list[j], ld)))
# in matrix format
else:
if labels:
print '\t' + '\t'.join(var_list)
if alg == 'r':
for i in xrange(len(R)):
if labels:
sys.stdout.write(var_list[i] + '\t')
print '\t'.join(['%0.6g' % x for x in R[i]])
elif alg == 'r2':
for i in xrange(len(R)):
if labels:
sys.stdout.write(var_list[i] + '\t')
print '\t'.join(['%0.6g' % x ** 2 for x in R[i]])
# test against a single variant
else:
R_index_var = [None] * len(var_list)
# for i in var_list.index(index_var):
i = var_list.index(index_var)
for j in xrange(len(var_list)):
# extract the variant pair from the dictionary
var_pair = np.array([X[var_list[i]], X[var_list[j]]])
# calculate regression
(slope, intercept, r_value, p_value, std_err) = stats.linregress(var_pair)
R_index_var[j] = r_value
# print output
for j in xrange(len(R_index_var)):
if alg == 'r':
value = R_index_var[j]
elif alg == 'r2':
value = R_index_var[j] ** 2
print "%s\t%s\t%0.6g" % (var_list[j], index_var, value)
return
# --------------------------------------
# main function
def main():
# parse the command line args
args = get_args()
# get list of variants to examine
var_list = []
if args.variants_file is not None:
for line in args.variants_file:
var_list.append(line.rstrip())
args.variants_file.close()
# get list of samples to examine
samp_set = set()
if args.samples_file is not None:
for line in args.samples_file:
v = line.rstrip().split('\t')
samp_set.add(v[0])
args.samples_file.close()
# parse algorithm
if args.alg not in ('r', 'r2'):
sys.stderr.write("\nError: algorithm '%s' not supported. Must be 'r' or 'r2'\n\n" % args.alg)
exit(1)
# call primary function
ld_continuous(args.vcf_in, var_list, samp_set, args.field, args.alg, args.index, args.labels, args.columns)
# close the files
args.vcf_in.close()
# initialize the script
if __name__ == '__main__':
try:
sys.exit(main())
except IOError, e:
if e.errno != 32: # ignore SIGPIPE
raise