-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathgrm.py
executable file
·259 lines (212 loc) · 8.14 KB
/
grm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
import argparse, sys
# import math, time, re
import gzip
import numpy as np
# from scipy import stats
# from collections import Counter
from argparse import RawTextHelpFormatter
__author__ = "Colby Chiang (cchiang@genome.wustl.edu)"
__version__ = "$Revision: 0.0.1 $"
__date__ = "$Date: 2015-07-09 11:25 $"
# --------------------------------------
# define functions
def get_args():
parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter, description="\
grm.py\n\
author: " + __author__ + "\n\
version: " + __version__ + "\n\
description: generate a genetic relatedness matrix from a VCF")
parser.add_argument('-i', '--input', metavar='VCF', dest='vcf_in', type=argparse.FileType('r'), default=None, help='VCF input [stdin]')
parser.add_argument('-v', '--variants', metavar='FILE', dest='variants_file', type=argparse.FileType('r'), default=None, required=False, help='list of variants to include')
parser.add_argument('-s', '--samples', metavar='FILE', dest='samples_file', type=argparse.FileType('r'), default=None, required=False, help='list of samples to include')
parser.add_argument('-f', '--field', metavar='STR', dest='field', default='GT', help='specify genotyping format field [GT]')
parser.add_argument('-a', '--algorithm', metavar='STR', dest='algorithm', default='mott', help='algorithm to use (mott, visscher) [mott]')
parser.add_argument('-z', '--znorm', dest='znorm', action='store_true', help='z-normalize genotypes prior to GRM')
parser.add_argument('-o', '--out', metavar='STR', dest='out_prefix', required=True, help='output file prefix')
# parser.add_argument('-c', '--covar', metavar='FILE', dest='covar', type=argparse.FileType('r'), default=None, required=True, help='tab delimited file of covariates')
# parser.add_argument('-v', '--max_var', metavar='FLOAT', dest='max_var', type=float, default=0.1, help='maximum genotype variance explained by covariates for variant to PASS filtering [0.1]')
# parse the arguments
args = parser.parse_args()
# if no input, check if part of pipe and if so, read stdin.
if args.vcf_in == None:
if sys.stdin.isatty():
parser.print_help()
exit(1)
else:
args.vcf_in = sys.stdin
# send back the user input
return args
# mott algorithm
def mott(X, N, p, j, k):
gr = 0.0
a = 0.0
b = 0.0
c = 0.0
num_obs = 0
for i in xrange(N):
if (len(set(X[i])) != 1
and X[i][j] != -1 and X[i][k] != -1):
num_obs += 1
a += (X[i][j] - 2 * p[i]) * (X[i][k] - 2 * p[i])
b += (X[i][j] - 2 * p[i]) ** 2
c += (X[i][k] - 2 * p[i]) ** 2
gr = a / ((b * c) ** 0.5)
return (gr, num_obs)
# visscher algorithm
def visscher(X, N, p, j, k):
gr = 0.0
num_obs = 0
for i in xrange(N):
if (len(set(X[i])) != 1
and X[i][j] != -1 and X[i][k] != -1
and p[i] > 0 and p[i] < 1):
num_obs += 1
gr += (X[i][j] - 2 * p[i]) * (X[i][k] - 2 * p[i]) / ( 2 * p[i] * (1 - p[i]))
gr = gr / float(N)
return (gr, num_obs)
# primary function
def make_grm(vcf_in,
var_set,
samp_set,
field,
algorithm,
znorm,
out_prefix):
out_grm = gzip.open("%s.grm.gz" % out_prefix, 'wb')
out_id = open("%s.grm.id" % out_prefix, 'w')
X = [] # matrix of genotypes for each sample
var_ids = []
samp_cols = []
sys.stderr.write("Reading genotypes... ")
for line in vcf_in:
if line[:2] == '##':
continue
v = line.rstrip().split('\t')
if line[0] == "#":
for i in xrange(9,len(v)):
if v[i] in samp_set or len(samp_set) == 0:
samp_cols.append(i)
out_id.write("%s\t%s\n" % (v[i], v[i]))
continue
if v[2] not in var_set:
continue
# read the genotypes
if field == 'GT':
gt_list = []
for i in samp_cols:
gt_str = v[i].split(':')[0]
if '.' in gt_str:
gt_list.append(-1)
continue
sep = '/'
if sep not in gt_str:
sep = '|'
gt_list.append(sum(map(int, gt_str.split(sep))))
X.append(gt_list)
var_ids.append(v[2])
else:
fmt = v[8].split(':')
field_idx = -1
for i in xrange(len(fmt)):
if fmt[i] == field:
field_idx = i
break
if field_idx == -1:
sys.stderr.write("Format field '%s' not found for variant %s\n" % (field, v[2]))
exit(1)
gt_list = []
for i in samp_cols:
gt_str = v[i].split(':')[field_idx]
# if no info for the field, fall back to regular genotype
if gt_str == '.':
gt_list.append(-1)
else:
gt_list.append(float(gt_str))
if znorm:
gt_mean = np.mean(gt_list)
gt_std = np.std(gt_list)
if gt_std == 0:
gt_list = [0 for gt in gt_list]
else:
gt_list = [(gt - gt_mean) / gt_std for gt in gt_list]
X.append(gt_list)
var_ids.append(v[2])
# close the id file
out_id.close()
# done reading genotypes
sys.stderr.write("done\n")
sys.stderr.write("Calculating variant statistics... ")
N = len(X) # number of variants
S = len(X[0]) # number of samples
p = [] # population allele frequency of alternate allele
d = [] # denominator to normalize variant
for i in xrange(len(X)): # each i is a different variant
gt = X[i]
informative_gt = [g for g in X[i] if g != -1]
try:
p_i = sum(informative_gt) / (2.0 * len(informative_gt))
except ZeroDivisionError:
p_i = -1
p.append(p_i)
# fill missing genotypes with the population mean
if X[i] == -1: X[i] = p_i
diff = [(g - p_i) for g in gt]
d_i = sum([d_j ** 2 for d_j in diff]) ** 0.5
d.append(d_i)
sys.stderr.write("done\n")
sys.stderr.write("Calculating genetic relatedness...\n")
for j in xrange(S):
sys.stderr.write("%s\n" % (j + 1))
for k in xrange(j + 1):
# print j,k
# print grm[j][k]
if algorithm == 'mott':
(gr, num_obs) = mott(X, N, p, j, k)
elif algorithm == 'visscher':
(gr, num_obs) = visscher(X, N, p, j, k)
# print "%s\t%s\t%s\t%.6g" % (j + 1, k + 1, num_obs, gr)
out_grm.write("%s\t%s\t%s\t%.8g\n" % (j + 1, k + 1, num_obs, gr))
# close the grm file
out_grm.close()
# done calculating genetic relatedness
sys.stderr.write("done\n")
return
# --------------------------------------
# main function
def main():
# parse the command line args
args = get_args()
# get list of variants to examine
var_set = set()
if args.variants_file is not None:
for line in args.variants_file:
var_set.add(line.rstrip())
args.variants_file.close()
# get list of samples to examine
samp_set = set()
if args.samples_file is not None:
for line in args.samples_file:
v = line.rstrip().split('\t')
samp_set.add(v[0])
args.samples_file.close()
allowed_algorithms = ['mott', 'visscher']
if args.algorithm not in allowed_algorithms:
sys.stderr.write('Error: algorithm "%s" not recognized. Choose from [%s]\n' % (args.algorithm, ','.join(allowed_algorithms)))
exit(1)
# call primary function
make_grm(args.vcf_in,
var_set, samp_set,
args.field,
args.algorithm,
args.znorm,
args.out_prefix)
# close the files
args.vcf_in.close()
# initialize the script
if __name__ == '__main__':
try:
sys.exit(main())
except IOError, e:
if e.errno != 32: # ignore SIGPIPE
raise