-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_vae_gan_copy_reduced.py
132 lines (102 loc) · 4.7 KB
/
torch_vae_gan_copy_reduced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import argparse
import numpy as np
import os
import time
import torch
import torch.utils.data
import torch.nn as nn
import torch.optim as optim
from torch.utils.data.dataset import Dataset
from torch.autograd import Variable
import torch_dataset_cancer
from torch.nn import functional as F
import constants
import torch_vae_gan_copy_model
batch_size_train=100
batch_size_val=10
num_workers=25
datasets=torch_dataset_cancer.CANCER_TYPES
torch_dataset=torch_dataset_cancer.CancerTypesDataset(dataset_names=torch_dataset_cancer.CANCER_TYPES, meta_groups_files=torch_dataset_cancer.META_GROUPS, metagroups_names=["{}_{}".format(x, i_x) for i_x, x in enumerate(torch_dataset_cancer.CANCER_TYPES)])
train_dataset,test_dataset = torch.utils.data.random_split(torch_dataset, [torch_dataset.__len__()-torch_dataset.__len__()/10, torch_dataset.__len__()/10])
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size_train,
shuffle=True, num_workers=num_workers, pin_memory=True)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size_val,
shuffle=True, num_workers=num_workers, pin_memory=True)
# define constant
max_epochs = 100000
lr = 0.001
beta = 5
alpha = 0.1
gamma = 5
delta = 5
n_latent_vector=2
G = torch_vae_gan_copy_model.VAE_GAN_Generator(n_latent_vector=n_latent_vector)
D = torch_vae_gan_copy_model.Discriminator(n_latent_vector=n_latent_vector)
criterion = nn.BCELoss(reduction='sum')
criterion
opt_enc = optim.Adam(G.encoder.parameters(), lr=lr)
opt_dec = optim.Adam(G.decoder.parameters(), lr=lr)
opt_dis = optim.Adam(D.parameters(), lr=lr * alpha)
opt_vae = optim.Adam(G.parameters(), lr=lr)
fixed_noise = Variable(torch.randn(batch_size_train, n_latent_vector))
data, _ = next(iter(torch_dataset))
fixed_batch = Variable(data)
min_val=10000000
min_val_epoch=-1
for epoch in range(max_epochs):
train_loss=0
val_loss=0
print "cur epoch: {}".format(epoch)
D_real_list, D_rec_enc_list, D_rec_noise_list, D_list = [], [], [], []
g_loss_list, rec_loss_list, prior_loss_list = [], [], []
for i, data_tuple in enumerate(trainloader,0):
data, _ = data_tuple
batch_size = data.size()[0]
ones_label = Variable(torch.ones(batch_size))
zeros_label = Variable(torch.zeros(batch_size))
# print (data_tuple.shape)
datav = Variable(data)
# mean, logvar, rec_enc = G(datav)
rec_enc = G(datav)
mean, logvar = G.encoder.encode(datav)
similarity_rec_enc = rec_enc # l_rec
similarity_data = datav # l_real
rec_loss = nn.BCELoss(reduction='sum')(similarity_rec_enc, similarity_data.detach())
# train encoder
prior_loss = 1 + logvar - mean.pow(2) - logvar.exp()
prior_loss = (-0.5 * torch.sum(prior_loss))
err_enc = prior_loss + beta*rec_loss
train_loss+=err_enc.item()
if i % 10 == 9: # print every 2000 mini-batches
print('[%d, %5d] train loss: %.3f' %
(epoch + 1, i + 1, train_loss / 100))
train_loss = 0.0
opt_vae.zero_grad()
err_enc.backward()
opt_vae.step()
for i, data in enumerate(testloader, 0):
with torch.no_grad():
# get the inputs
inputs, labels = data
# forward + backward + optimize
# mean, logvar, rec_enc = G(datav)
rec_enc = G(datav)
mean, logvar = G.encoder.encode(datav)
prior_loss = 1 + logvar - mean.pow(2) - logvar.exp()
prior_loss = (-0.5 * torch.sum(prior_loss)) #
similarity_rec_enc = rec_enc # l_rec
similarity_data = datav # l_real
rec_loss = nn.BCELoss(reduction='sum')(similarity_rec_enc, similarity_data.detach())
loss = prior_loss + rec_loss
val_loss += loss.item()
print('[%d, %5d] val loss: %.3f' % (epoch + 1, i + 1, val_loss / 100))
if min_val > val_loss/100:
min_val=val_loss/100
min_val_epoch=epoch
torch.save(G.encoder.state_dict(), os.path.join(constants.OUTPUT_GLOBAL_DIR, "VAE_ENC_mdl"))
torch.save(G.decoder.state_dict(), os.path.join(constants.OUTPUT_GLOBAL_DIR, "VAE_DEC_mdl"))
torch.save(D.state_dict(), os.path.join(constants.OUTPUT_GLOBAL_DIR, "VAE_DIS_mdl"))
torch.save(G.encoder.state_dict(), os.path.join(constants.OUTPUT_GLOBAL_DIR, "VAE_ENC_mdl_"))
torch.save(G.decoder.state_dict(), os.path.join(constants.OUTPUT_GLOBAL_DIR, "VAE_DEC_mdl_"))
torch.save(D.state_dict(), os.path.join(constants.OUTPUT_GLOBAL_DIR, "VAE_DIS_mdl_"))
print "min_val epoch: {}, min_val: {}".format(min_val_epoch, min_val)