-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathseasonet_exp5_v1.yml
48 lines (48 loc) · 1.07 KB
/
seasonet_exp5_v1.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
batch_size: 128
losses: {
with_ce_criterion: true,
weights: {
ce: 1.0,
}
}
dataset:
root_path: data/SeasoNet/data
cls: datasets.seasonet.SeasoNetDataset
kwargs: {
seasons: ['Spring'],
bands: ['10m_RGB', '10m_IR',],
grids:[1],
}
collate_fn: mods.v5.collate_fn
stats: {
mean: [444.21923828125, 715.9031372070312, 813.4345703125, 2604.867919921875],
std: [279.85552978515625, 385.3569641113281, 648.458984375, 796.9918212890625],
min: [-1025.0, -3112.0, -5122.0, -3851.0],
max: [14748.0, 14960.0, 16472.0, 16109.0]
}
collate_kwargs: {}
denorm: mods.v5.uncollate_fn
printable: mods.v5.printable
optim: {
learning_rate: 0.0001,
model_betas: [0.9, 0.999],
model_eps: 0.00000001,
model_weight_decay: 0
}
semantic_segm: {
pad_before: [4, 4, 4, 4],
in_channels: 4,
type: FarSeg,
model: {
backbone: resnet50,
}
}
train: semantic_segm.training.train
mean_std: mods.v5.get_mean_std
metrics: {
eval_every: 1
}
visualize: {
model: semantic_segm.model.build_model,
checkpoint: chk_loader.load_state_dict_model_only,
}