-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathprompt_form.py
399 lines (341 loc) · 17.7 KB
/
prompt_form.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import functools
import os
import math
import csv
import datetime
import filelock
import gradio as gr
from utils import is_gradio_version4
def get_chatbot_name(base_model, display_name, model_path_llama, inference_server='', prompt_type='', model_label_prefix='', debug=False):
#have_inference_server = inference_server not in [no_server_str, None, '']
#if not have_inference_server and prompt_type in [None, '', 'plain']:
# label_postfix = ' [Please select prompt_type in Models tab or on CLI for chat models]'
#else:
# pass
label_postfix = ''
if not debug:
inference_server = ''
else:
inference_server = ' : ' + inference_server
if base_model == 'llama':
model_path_llama = os.path.basename(model_path_llama)
if model_path_llama.endswith('?download=true'):
model_path_llama = model_path_llama.replace('?download=true', '')
label = f'{model_label_prefix} [Model: {model_path_llama}{inference_server}]'
else:
if base_model == 'mixtral-8x7b-32768':
base_model = 'groq:mixtral-8x7b-32768'
if display_name:
# so can distinguish between models in UI
base_model = display_name
label = f'{model_label_prefix} [Model: {base_model}{inference_server}]'
label += label_postfix
return label
def get_avatars(base_model, model_path_llama, inference_server=''):
if base_model == 'llama':
base_model = model_path_llama
if inference_server is None:
inference_server = ''
model_base = os.getenv('H2OGPT_MODEL_BASE', 'models/')
human_avatar = "human.jpg"
if 'h2ogpt-gm'.lower() in base_model.lower():
bot_avatar = "h2oai.png"
elif 'llava-' in base_model.lower():
bot_avatar = "llava.png"
elif 'mistralai'.lower() in base_model.lower() or \
'mistral'.lower() in base_model.lower() or \
'mixtral'.lower() in base_model.lower():
bot_avatar = "mistralai.png"
elif '01-ai/Yi-'.lower() in base_model.lower():
bot_avatar = "yi.svg"
elif 'wizard' in base_model.lower():
bot_avatar = "wizard.jpg"
elif 'openchat' in base_model.lower():
bot_avatar = "openchat.png"
elif 'vicuna' in base_model.lower():
bot_avatar = "vicuna.jpeg"
elif 'longalpaca' in base_model.lower():
bot_avatar = "longalpaca.png"
elif 'llama2-70b-chat' in base_model.lower():
bot_avatar = "meta.png"
elif 'llama2-13b-chat' in base_model.lower():
bot_avatar = "meta.png"
elif 'llama2-7b-chat' in base_model.lower():
bot_avatar = "meta.png"
elif 'llama2' in base_model.lower():
bot_avatar = "lama2.jpeg"
elif 'llama-2' in base_model.lower():
bot_avatar = "lama2.jpeg"
elif 'llama' in base_model.lower():
bot_avatar = "lama.jpeg"
elif 'openai' in base_model.lower() or 'openai' in inference_server.lower():
bot_avatar = "openai.png"
elif 'hugging' in base_model.lower():
bot_avatar = "hf-logo.png"
elif 'claude' in base_model.lower():
bot_avatar = "anthropic.jpeg"
elif 'gemini' in base_model.lower():
bot_avatar = "google.png"
else:
bot_avatar = "h2oai.png"
bot_avatar = os.path.join(model_base, bot_avatar)
human_avatar = os.path.join(model_base, human_avatar)
human_avatar = human_avatar if os.path.isfile(human_avatar) else None
bot_avatar = bot_avatar if os.path.isfile(bot_avatar) else None
return human_avatar, bot_avatar
def ratingfn1():
return 1
def ratingfn2():
return 2
def ratingfn3():
return 3
def ratingfn4():
return 4
def ratingfn5():
return 5
def submit_review(review_text, text_output, text_output2, *text_outputs1, reviews_file=None, num_model_lock=None,
do_info=True):
if reviews_file is None:
if do_info:
gr.Info('No review file')
return ''
chatbots = [text_output, text_output2] + list(text_outputs1)
last_chatbots = [x[-1] for x in chatbots if x]
now = datetime.datetime.now()
with filelock.FileLock(reviews_file + '.lock'):
with open(reviews_file, 'a', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([review_text, *last_chatbots, now])
if do_info:
gr.Info('Review submitted!')
return ''
def make_chatbots(output_label0, output_label0_model2, **kwargs):
visible_models = kwargs['visible_models']
all_models = kwargs['all_possible_display_names']
visible_ratings = kwargs['visible_ratings']
reviews_file = kwargs['reviews_file'] or 'reviews.csv'
text_outputs = []
chat_kwargs = []
min_width = 250 if kwargs['gradio_size'] in ['small', 'large', 'medium'] else 160
for model_state_locki, model_state_lock in enumerate(kwargs['model_states']):
output_label = get_chatbot_name(model_state_lock["base_model"],
model_state_lock["display_name"],
model_state_lock['llamacpp_dict']["model_path_llama"],
model_state_lock["inference_server"],
model_state_lock["prompt_type"],
model_label_prefix=kwargs['model_label_prefix'],
debug=bool(os.environ.get('DEBUG_MODEL_LOCK', 0)))
if kwargs['avatars']:
avatar_images = get_avatars(model_state_lock["base_model"],
model_state_lock['llamacpp_dict']["model_path_llama"],
model_state_lock["inference_server"])
else:
avatar_images = None
chat_kwargs.append(dict(render_markdown=kwargs.get('render_markdown', True),
label=output_label,
show_label=kwargs.get('visible_chatbot_label', True),
elem_classes='chatsmall',
height=kwargs['height'] or 400,
min_width=min_width,
avatar_images=avatar_images,
likeable=True,
latex_delimiters=[],
show_copy_button=kwargs['show_copy_button'],
visible=kwargs['model_lock'] and (visible_models is None or
model_state_locki in visible_models or
all_models[model_state_locki] in visible_models
)))
# base view on initial visible choice
if visible_models and kwargs['model_lock_layout_based_upon_initial_visible']:
len_visible = len(visible_models)
else:
len_visible = len(kwargs['model_states'])
if kwargs['model_lock_columns'] == -1:
kwargs['model_lock_columns'] = len_visible
if kwargs['model_lock_columns'] is None:
kwargs['model_lock_columns'] = 3
ncols = kwargs['model_lock_columns']
if kwargs['model_states'] == 0:
nrows = 0
else:
nrows = math.ceil(len_visible / kwargs['model_lock_columns'])
if kwargs['model_lock_columns'] == 0:
# not using model_lock
pass
elif nrows <= 1:
with gr.Row():
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']):
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows == kwargs['model_states']:
with gr.Row():
for chat_kwargs1, model_state_lock in zip(chat_kwargs, kwargs['model_states']):
text_outputs.append(gr.Chatbot(**chat_kwargs1))
elif nrows > 0:
len_chatbots = len(kwargs['model_states'])
nrows = math.ceil(len_chatbots / kwargs['model_lock_columns'])
for nrowi in range(nrows):
with gr.Row():
for mii, (chat_kwargs1, model_state_lock) in enumerate(zip(chat_kwargs, kwargs['model_states'])):
if mii < nrowi * len_chatbots / nrows or mii >= (1 + nrowi) * len_chatbots / nrows:
continue
text_outputs.append(gr.Chatbot(**chat_kwargs1))
if len(kwargs['model_states']) > 0:
assert len(text_outputs) == len(kwargs['model_states'])
if kwargs['avatars']:
avatar_images = get_avatars(kwargs["base_model"], kwargs['llamacpp_dict']["model_path_llama"],
kwargs["inference_server"])
else:
avatar_images = None
no_model_lock_chat_kwargs = dict(render_markdown=kwargs.get('render_markdown', True),
show_label=kwargs.get('visible_chatbot_label', True),
elem_classes='chatsmall',
height=kwargs['height'] or 400,
min_width=min_width,
show_copy_button=kwargs['show_copy_button'],
avatar_images=avatar_images,
latex_delimiters=[],
)
with gr.Row():
text_output = gr.Chatbot(label=output_label0,
visible=not kwargs['model_lock'],
**no_model_lock_chat_kwargs,
likeable=True,
)
text_output2 = gr.Chatbot(label=output_label0_model2,
visible=False and not kwargs['model_lock'],
**no_model_lock_chat_kwargs,
likeable=True,
)
chatbots = [text_output, text_output2] + text_outputs
with gr.Row(visible=visible_ratings):
review_textbox = gr.Textbox(visible=True, label="Review", placeholder="Type your review...", scale=4)
rating_text_output = gr.Textbox(elem_id="text_output", visible=False)
with gr.Column():
with gr.Row():
rating1 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating1", size="sm")
rating2 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating2", size="sm")
rating3 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating3", size="sm")
rating4 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating4", size="sm")
rating5 = gr.Button(value='⭑', variant='outline-primary', scale=1, elem_id="rating5", size="sm")
review_js1 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js2 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js3 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js4 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "rgba(173, 181, 189, 0.5)";
element.style.color = "rgba(173, 181, 189, 0.5)";
}
"""
review_js5 = """
function highlightButtons() {
var element = document.getElementById("rating1");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating2");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating3");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating4");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
var element = document.getElementById("rating5");
// element.style.backgroundColor = "#ffa41c";
element.style.color = "#ffa41c";
}
"""
if is_gradio_version4:
rating1.click(ratingfn1, outputs=rating_text_output, js=review_js1)
rating2.click(ratingfn2, outputs=rating_text_output, js=review_js2)
rating3.click(ratingfn3, outputs=rating_text_output, js=review_js3)
rating4.click(ratingfn4, outputs=rating_text_output, js=review_js4)
rating5.click(ratingfn5, outputs=rating_text_output, js=review_js5)
else:
rating1.click(ratingfn1, outputs=rating_text_output, _js=review_js1)
rating2.click(ratingfn2, outputs=rating_text_output, _js=review_js2)
rating3.click(ratingfn3, outputs=rating_text_output, _js=review_js3)
rating4.click(ratingfn4, outputs=rating_text_output, _js=review_js4)
rating5.click(ratingfn5, outputs=rating_text_output, _js=review_js5)
submit_review_btn = gr.Button("Submit Review", scale=1)
submit_review_func = functools.partial(submit_review,
reviews_file=reviews_file if reviews_file else None,
num_model_lock=len(chatbots))
submit_review_btn.click(submit_review_func,
inputs=[review_textbox, rating_text_output,
text_output, text_output2] + text_outputs,
outputs=review_textbox)
# set likeable method
def on_like(like_data: gr.LikeData):
submit_review(str(like_data.liked) + "," + str(like_data.target.label), *tuple([['', like_data.value], []]),
reviews_file=reviews_file, num_model_lock=len(chatbots), do_info=False)
for chatbot in chatbots:
chatbot.like(on_like)
return text_output, text_output2, text_outputs