forked from MysteryVaibhav/fake_news_semantics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
251 lines (228 loc) · 12.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from layers import GraphConvolution, GraphAttentionLayer
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib import cm
class Classify(torch.nn.Module):
def __init__(self, params, vocab_size, ntags, pte=None):
super(Classify, self).__init__()
self.params = params
self.word_embeddings = nn.Embedding(vocab_size, params.emb_dim)
if pte is None:
nn.init.xavier_uniform_(self.word_embeddings.weight)
else:
self.word_embeddings.weight.data.copy_(torch.from_numpy(pte))
self.text_encoder = CnnEncoder(
params.filters, params.emb_dim, params.kernel_size) if params.encoder == 1 else LstmEncoder(
params.hidden_dim, params.emb_dim)
self.dropout = nn.Dropout(params.dropout)
if params.encoder == 2:
self.gcn1 = GraphConvolution(params.hidden_dim, params.node_emb_dim, params.dropout, act=F.relu)
self.linear_transform = nn.Linear(in_features=params.node_emb_dim,
out_features=ntags)
elif params.encoder == 3:
self.gcn1 = GraphConvolution(params.hidden_dim, params.node_emb_dim, params.dropout, act=F.relu)
# Add the attention thingy
self.linear_transform = nn.Linear(in_features=params.node_emb_dim,
out_features=ntags)
elif params.encoder == 4:
self.gcn1 = GraphAttentionLayer(params.hidden_dim, params.node_emb_dim, params.dropout, 0.2)
self.attentions = [GraphAttentionLayer(params.hidden_dim, params.node_emb_dim, dropout=params.dropout,
alpha=0.2, concat=True) for _ in range(0)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
self.out_att = GraphAttentionLayer(params.hidden_dim, params.node_emb_dim, dropout=params.dropout,
alpha=0.2, concat=False)
# Add the attention thingy
self.linear_transform = nn.Linear(in_features=params.node_emb_dim,
out_features=ntags)
elif params.encoder == 5:
self.gcn1 = GraphAttentionLayer(params.hidden_dim, params.node_emb_dim, params.dropout, 0.2)
self.attentions = [GraphAttentionLayer(params.hidden_dim, params.node_emb_dim, dropout=params.dropout,
alpha=0.2, concat=True) for _ in range(2)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
self.out_att = GraphAttentionLayer(params.node_emb_dim * 2, params.node_emb_dim, dropout=params.dropout,
alpha=0.2, concat=False)
# Add the attention thingy
self.linear_transform = nn.Linear(in_features=params.node_emb_dim,
out_features=ntags)
else:
self.linear_transform = nn.Linear(in_features=params.hidden_dim,
out_features=ntags)
def forward(self, input_sents, input_lens, adj=None, actual_sentence=None):
embeds = self.word_embeddings(input_sents) # bs * max_seq_len * emb
h = self.text_encoder(embeds, input_lens) # bs * 100 * hidden
h = self.dropout(F.relu(h)) # Relu activation and dropout
if self.params.encoder == 2:
# Currently it's a dummy matrix with all edge weights one
adj_matrix = np.ones((h.size(0), h.size(0))) if adj is None else adj
np.fill_diagonal(adj_matrix, 0)
adj_matrix = self.to_tensor(adj_matrix)
h = self.gcn1(h, adj_matrix)
# Simple max pool on all node representations
h, _ = h.max(dim=0)
elif self.params.encoder == 3:
# Currently it's a dummy matrix with all edge weights one
adj_matrix = np.ones((h.size(0), h.size(0))) if adj is None else adj
# Setting link between same sentences to 0
np.fill_diagonal(adj_matrix, 0)
adj_matrix = self.to_tensor(adj_matrix)
h = self.gcn1(h, adj_matrix) # num_sentences * node_emb_dim
# Adding self attention layer on the representations
att = F.softmax(torch.mm(h, h.transpose(0, 1)) / np.sqrt(self.params.node_emb_dim), dim=1)
if self.params.plot == 1:
mat = np.matrix(att.data.numpy())
fig = plt.figure()
im = plt.imshow(mat, interpolation='nearest', cmap=cm.hot, origin='lower')
plt.xlabel('Sentence Number')
plt.ylabel('Sentence Number')
fig.colorbar(im)
if mat.shape[0] < 10:
plt.xticks(range(0, mat.shape[0], 1))
plt.yticks(range(0, mat.shape[0], 1))
fig.savefig('plots/sample_attn_{}.png'.format(mat.shape[0]))
# Simple max pool on all node representations
h, _ = h.max(dim=0)
elif self.params.encoder == 4:
# Currently it's a dummy matrix with all edge weights one
adj_matrix = np.ones((h.size(0), h.size(0))) if adj is None else adj
# Setting link between same sentences to 0
np.fill_diagonal(adj_matrix, 0)
adj_matrix = self.to_tensor(adj_matrix)
h = F.dropout(h, self.params.dropout, training=self.training)
h, attn = self.out_att(h, adj_matrix)
h = F.elu(h)
if self.params.plot == 1:
mat = np.matrix(adj_matrix.cpu().data.numpy())
fig = plt.figure()
im = plt.imshow(mat, interpolation='nearest', cmap=cm.hot, origin='lower')
plt.xlabel('Sentence Number')
# for j, actual_sent in enumerate(actual_sentence):
# plt.text(10, 2 + j, actual_sent, ha='right', wrap=True, size=2)
plt.ylabel('Sentence Number')
if mat.shape[0] < 10:
plt.xticks(range(0, mat.shape[0], 1))
plt.yticks(range(0, mat.shape[0], 1))
fig.colorbar(im)
fig.savefig('plots/adj/sample_adj_matrix_{}.png'.format(mat.shape[0]))
mat = np.matrix(attn.cpu().data.numpy())
fig = plt.figure()
im = plt.imshow(mat, interpolation='nearest', cmap=cm.hot, origin='lower')
plt.xlabel('Sentence Number')
#for j, actual_sent in enumerate(actual_sentence):
# plt.text(10, 2 + j, actual_sent, ha='right', wrap=True, size=2)
plt.ylabel('Sentence Number')
if mat.shape[0] < 10:
plt.xticks(range(0, mat.shape[0], 1))
plt.yticks(range(0, mat.shape[0], 1))
fig.colorbar(im)
fig.savefig('plots/adj/sample_attn_gat_{}.png'.format(mat.shape[0]))
if actual_sentence is not None:
file = open('plots/adj/{}.txt'.format(mat.shape[0]), 'w')
for actual_sent in actual_sentence:
file.write(actual_sent + "\n")
file.close()
# Simple max pool on all node representations
h, _ = h.max(dim=0)
elif self.params.encoder == 5:
# Currently it's a dummy matrix with all edge weights one
adj_matrix = np.ones((h.size(0), h.size(0))) if adj is None else adj
# Setting link between same sentences to 0
np.fill_diagonal(adj_matrix, 0)
adj_matrix = self.to_tensor(adj_matrix)
hs = []
for i, att in enumerate(self.attentions):
h_i, att_i = att(h, adj_matrix)
if self.params.plot == 1:
mat = np.matrix(att_i.cpu().data.numpy())
fig = plt.figure()
im = plt.imshow(mat, interpolation='nearest', cmap=cm.hot, origin='lower')
plt.xlabel('Sentence Number')
if mat.shape[0] < 10:
plt.xticks(range(0, mat.shape[0], 1))
plt.yticks(range(0, mat.shape[0], 1))
#for j, actual_sent in enumerate(actual_sentence):
# plt.text(10, 2 + j, actual_sent, ha='right', wrap=True, size=2)
plt.ylabel('Sentence Number')
fig.colorbar(im)
fig.savefig('plots/sample_attn_gat_{}_{}.png'.format(i, mat.shape[0]))
hs.append(h_i)
h = torch.cat(hs, dim=1)
h = F.dropout(h, self.params.dropout, training=self.training)
h, attn = self.out_att(h, adj_matrix)
h = F.elu(h)
if self.params.plot == 1:
mat = np.matrix(adj_matrix.cpu().data.numpy())
fig = plt.figure()
im = plt.imshow(mat, interpolation='nearest', cmap=cm.hot, origin='lower')
plt.xlabel('Sentence Number')
# for j, actual_sent in enumerate(actual_sentence):
# plt.text(10, 2 + j, actual_sent, ha='right', wrap=True, size=2)
plt.ylabel('Sentence Number')
if mat.shape[0] < 10:
plt.xticks(range(0, mat.shape[0], 1))
plt.yticks(range(0, mat.shape[0], 1))
fig.colorbar(im)
fig.savefig('plots/adj/sample_adj_matrix_{}.png'.format(mat.shape[0]))
mat = np.matrix(attn.cpu().data.numpy())
fig = plt.figure()
im = plt.imshow(mat, interpolation='nearest', cmap=cm.hot, origin='lower')
plt.xlabel('Sentence Number')
#for j, actual_sent in enumerate(actual_sentence):
# plt.text(10, 2 + j, actual_sent, ha='right', wrap=True, size=2)
plt.ylabel('Sentence Number')
if mat.shape[0] < 10:
plt.xticks(range(0, mat.shape[0], 1))
plt.yticks(range(0, mat.shape[0], 1))
fig.colorbar(im)
fig.savefig('plots/adj/sample_attn_gat_{}.png'.format(mat.shape[0]))
if actual_sentence is not None:
file = open('plots/adj/{}.txt'.format(mat.shape[0]), 'w')
for actual_sent in actual_sentence:
file.write(actual_sent + "\n")
file.close()
# Simple max pool on all node representations
h, _ = h.max(dim=0)
h = self.linear_transform(h) # bs * ntags
return h
@staticmethod
def to_tensor(arr):
# list -> Tensor (on GPU if possible)
if torch.cuda.is_available():
tensor = torch.tensor(arr).type(torch.cuda.FloatTensor)
else:
tensor = torch.tensor(arr).type(torch.FloatTensor)
return tensor
class LstmEncoder(torch.nn.Module):
def __init__(self, hidden_dimension, embedding_dimension):
super(LstmEncoder, self).__init__()
self.hidden_dim = hidden_dimension
self.lstm = nn.LSTM(embedding_dimension, hidden_dimension)
def forward(self, embeds, seq_lens):
# By default a LSTM requires the batch_size as the second dimension
# You could also use batch_first=True while declaring the LSTM module, then this permute won't be required
embeds = embeds.permute(1, 0, 2) # seq_len * batch_size * embedding_dim
packed_input = pack_padded_sequence(embeds, seq_lens)
_, (hn, cn) = self.lstm(packed_input)
# two outputs are returned. _ stores all the hidden representation at each time_step
# (hn, cn) is just for convenience, and is hidden representation and context after the last time_step
# _ : will be of PackedSequence type, once unpacked, you will get a tensor of size: seq_len x bs x hidden_dim
# hn : 1 x bs x hidden_dim
return hn[-1] # bs * hidden_dim
class CnnEncoder(torch.nn.Module):
def __init__(self, filters, emb_dim, kernel_size):
super(CnnEncoder, self).__init__()
self.conv_tri = nn.Conv1d(in_channels=emb_dim, out_channels=filters, kernel_size=kernel_size, padding=1)
def forward(self, embeds, seq_lens):
embeds = embeds.permute(0, 2, 1) # bs * ed * seq
h = self.conv_tri(embeds) # bs * hd * seq
# Max pooling
h = h.max(dim=2)[0] # bs * hd
h = F.relu(h)
return h # bs * hidden_dim