-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
249 lines (215 loc) · 12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding: utf-8 -*-
#/usr/bin/python2
from __future__ import print_function
import tensorflow as tf
from layers import *
from hyperparams import Hyperparams as hp
from data_load_ml import *
from modules import *
import os, codecs
from tqdm import tqdm
from utils import *
from model import Generator, Discriminator
if __name__ == '__main__':
# load gen data
gen_user, gen_card, gen_card_idx, gen_item_cand, gen_item_pos, gen_num_batch \
= get_gen_batch_data(is_training=True)
gen_user_test, gen_card_test, _, gen_item_cand_test, gen_item_pos_test, gen_num_batch_test \
= get_gen_batch_data(is_training=False)
# Construct graph
with tf.name_scope('Generator'):
g = Generator(is_training=True)
print(len(tf.get_variable_scope().global_variables()))
with tf.name_scope('Discriminator'):
d = Discriminator(is_training=True, is_testing=False)
print(len(tf.get_variable_scope().global_variables()))
tf.get_variable_scope().reuse_variables()
with tf.name_scope('DiscriminatorInfer'):
d_infer = Discriminator(is_training=False, is_testing=False)
with tf.name_scope('DiscriminatorTest'):
d_test = Discriminator(is_training=False, is_testing=True)
with tf.name_scope('GeneratorInfer'):
g_infer = Generator(is_training=False)
print("Graph loaded")
# Load vocabulary
user2idx, idx2user = load_user_vocab()
item2idx, idx2item = load_item_vocab()
# log file init
gen_train_log = open(os.path.join(hp.logdir, hp.gen_train_log_path), 'w')
gen_train_log.write('step\tgen_reward\tprecision@4\tprecision\n')
gen_test_log = open(os.path.join(hp.logdir, hp.gen_test_log_path), 'w')
gen_test_log.write('step\tgen_reward\tprecision@4\tprecision\n')
dis_train_log = open(os.path.join(hp.logdir, hp.dis_train_log_path), 'w')
dis_train_log.write('step\tdis_loss\tdis_acc\n')
dis_test_log = open(os.path.join(hp.logdir, hp.dis_test_log_path), 'w')
dis_test_log.write('step\tdis_loss\tdis_acc\n')
# Start session
sv = tf.train.Supervisor(is_chief= True,
summary_op=None,
logdir=hp.logdir,
save_model_secs=0)
gpu_options = tf.GPUOptions(
per_process_gpu_memory_fraction=0.95,
allow_growth=True) # seems to be not working
sess_config = tf.ConfigProto(allow_soft_placement=True,
gpu_options=gpu_options)
with sv.managed_session(config=sess_config) as sess:
print('Discriminator training start!')
dis_acc_best = 0.0
dis_loss_total, dis_acc_total = 0.0, 0.0
for epoch in range(1, hp.dis_num_epochs + 1):
if sv.should_stop():
break
print('Discriminator epoch: ', epoch)
# for step in tqdm(range(d.num_batch), total=d.num_batch, ncols=70, leave=False, unit='b'):
for step in range(d.num_batch):
gs_dis = sess.run(d.global_step)
_, dis_loss, dis_acc = sess.run([d.train_op, d.dis_loss, d.dis_acc])
dis_loss_total += dis_loss
dis_acc_total += dis_acc
## print
if (gs_dis + 1) % hp.print_per_step == 0:
print('gs_dis: {}, dis_loss_train: {}, dis_acc_train: {}'.format(
(gs_dis + 1),
dis_loss_total / (1.0 * (gs_dis + 1)),
dis_acc_total / (1.0 * (gs_dis + 1))))
dis_train_log.write('{}\t{}\t{}\n'.format(
(gs_dis + 1),
dis_loss_total / (1.0 * (gs_dis + 1)),
dis_acc_total / (1.0 * (gs_dis + 1))))
dis_train_log.flush()
## test
if (gs_dis + 1) % hp.test_per_step == 0:
dis_loss_test, dis_acc_test = 0.0, 0.0
for _ in range(d_test.num_batch):
dis_loss, dis_acc = sess.run([d_test.dis_loss, d_test.dis_acc])
dis_loss_test += dis_loss
dis_acc_test += dis_acc
dis_loss_test /= (1.0 * d_test.num_batch)
dis_acc_test /= (1.0 * d_test.num_batch)
print('gs_dis: {}, dis_loss_test: {}, dis_acc_test: {}'.format(
(gs_dis + 1), dis_loss_test, dis_acc_test))
dis_test_log.write('{}\t{}\t{}\n'.format(
(gs_dis + 1), dis_loss_test, dis_acc_test))
dis_test_log.flush()
if dis_acc_test > dis_acc_best:
dis_acc_best = dis_acc_test
print('dis_acc_best: ', dis_acc_best)
sv.saver.save(sess, hp.logdir + '/model/best_model')
print('Discriminator training done!')
sv.saver.restore(sess, hp.logdir + '/model/best_model')
print('Generator training start!')
# 记录sample到的最好的结果
memory_reward = {}
memory_card_idx = {}
memory_card = {}
precision_at_4_best, precision_best = 0.0, 0.0
reward_total, precision_at_4_total, precision_total = 0.0, 0.0, 0.0
for epoch in range(1, hp.gen_num_epochs + 1):
if sv.should_stop():
break
print('Generator epoch: ', epoch)
# for step in tqdm(range(g.num_batch), total=g.num_batch, ncols=70, leave=False, unit='b'):
for step in range(gen_num_batch):
user, card, card_idx, item_cand, item_pos = \
sess.run([gen_user, gen_card, gen_card_idx, gen_item_cand, gen_item_pos])
if hp.is_hill_climbing:
samples = []
for i in range(hp.batch_size):
user_i = np.tile(user[i], (hp.num_hill_climb))
item_cand_i = np.tile(item_cand[i], (hp.num_hill_climb, 1))
hill_sampled_card_idx, hill_sampled_card = sess.run([g.sampled_path, g.sampled_result],
feed_dict={g.user: user_i,
g.item_cand: item_cand_i})
hill_reward = sess.run(d_infer.dis_reward,
feed_dict={d_infer.card: hill_sampled_card,
d_infer.user: user_i})
sorted_list = sorted(list(zip(hill_sampled_card, hill_sampled_card_idx, hill_reward)),
key=lambda x: x[2], reverse=True)
samples.append(sorted_list[np.random.choice(hp.top_k_candidate)])
if user[i] not in memory_reward:
memory_reward[user[i]] = sorted_list[0][2]
memory_card_idx[user[i]] = sorted_list[0][1]
memory_card[user[i]] = sorted_list[0][0]
else:
if memory_reward[user[i]] > sorted_list[0][2]:
memory_reward[user[i]] = sorted_list[0][2]
memory_card_idx[user[i]] = sorted_list[0][1]
memory_card[user[i]] = sorted_list[0][0]
(sampled_card, sampled_card_idx, reward) = zip(*samples)
else:
# sample
sampled_card_idx, sampled_card = sess.run([g.sampled_path, g.sampled_result],
feed_dict={g.user: user, g.item_cand: item_cand})
if hp.use_dis_reward:
reward = sess.run(d_infer.dis_reward,
feed_dict={d_infer.card: sampled_card, d_infer.user: user})
else:
reward = []
for i in range(len(sampled_card)):
if item_pos[i] in set(sampled_card[i]):
reward.append(1.0)
else:
reward.append(-1.0)
# train
sess.run(g.train_op, feed_dict={g.decode_target_ids: sampled_card_idx,
g.reward: reward,
g.item_cand: item_cand,
g.user: user,
g.card_idx: card_idx})
gs_gen = sess.run(g.global_step)
reward_total += np.mean(reward)
# beamsearch
beam_card = sess.run(g_infer.infer_result,
feed_dict={g_infer.item_cand: item_cand,
g_infer.user: user})
precision_at_4_total += precision_at_4(beam_card, item_pos)
precision_total += precision(beam_card, card)
## print
if (gs_gen + 1) % hp.print_per_step == 0:
print('gs_gen: {}, gen_reward_train: {}, precision@4_train: {}, precision_train: {}'.format(
(gs_gen + 1),
reward_total / (1.0 * (gs_gen + 1)),
precision_at_4_total / (1.0 * (gs_gen + 1)),
precision_total / (1.0 * (gs_gen + 1))))
gen_train_log.write('{}\t{}\t{}\t{}\n'.format(
(gs_gen + 1),
reward_total / (1.0 * (gs_gen + 1)),
precision_at_4_total / (1.0 * (gs_gen + 1)),
precision_total / (1.0 * (gs_gen + 1))))
gen_train_log.flush()
## test
if (gs_gen + 1) % hp.test_per_step == 0:
precision_at_4_test, precision_test, reward_test = 0.0, 0.0, 0.0
for _ in range(gen_num_batch_test):
user_test, card_test, item_cand_test, item_pos_test \
= sess.run([gen_user_test, gen_card_test, gen_item_cand_test, gen_item_pos_test])
beam_card_test = sess.run(g_infer.infer_result,
feed_dict={g_infer.item_cand: item_cand_test,
g_infer.user: user_test})
precision_at_4_test += precision_at_4(beam_card_test, item_pos_test)
precision_test += precision(beam_card_test, card_test)
reward = sess.run(d_infer.dis_reward,
feed_dict={d_infer.card: beam_card_test,
d_infer.user: user_test})
reward_test += np.mean(reward)
reward_test /= (1.0 * gen_num_batch_test)
precision_at_4_test /= (1.0 * gen_num_batch_test)
precision_test /= (1.0 * gen_num_batch_test)
print('gs_gen: {}, gen_reward_test: {}, precision@4_test: {}, precision_test: {}'.format(
(gs_gen + 1), reward_test, precision_at_4_test, precision_test))
gen_test_log.write('{}\t{}\t{}\t{}\n'.format(
(gs_gen + 1), reward_test, precision_at_4_test, precision_test))
gen_test_log.flush()
if precision_at_4_test > precision_at_4_best:
precision_at_4_best = precision_at_4_test
precision_best = precision_test
print('precision_at_4_best: ', precision_at_4_best,
'precision_best: ', precision_best)
sv.saver.save(sess, hp.logdir + '/model/best_model')
print('Generator training done!')
print("Done")
gen_train_log.close()
gen_test_log.close()
dis_train_log.close()
dis_test_log.close()