-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmodel.py
212 lines (179 loc) · 10.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
#/usr/bin/python2
from __future__ import print_function
import tensorflow as tf
from layers import *
from hyperparams import Hyperparams as hp
from data_load_ml import *
from modules import *
from utils import *
class Generator():
def __init__(self, is_training=True):
self.user = tf.placeholder(tf.int32, shape=(None,))
self.item_cand = tf.placeholder(tf.int32, shape=(None, hp.seq_length))
self.card_idx = tf.placeholder(tf.int32, shape=(None, hp.res_length))
# self.item_pos = tf.placeholder(tf.int32, shape=(None,))
# define decoder inputs
self.decode_target_ids = tf.placeholder(dtype=tf.int32, shape=[hp.batch_size, hp.res_length],
name="decoder_target_ids") # [batch_size, res_length]
self.reward = tf.placeholder(dtype=tf.float32, shape=[hp.batch_size],
name="reward") # [batch_size]
# Load vocabulary
user2idx, idx2user = load_user_vocab()
item2idx, idx2item = load_item_vocab()
# Encoder
with tf.variable_scope("encoder"):
## Embedding
# enc_user = [batch_size, hidden_units]
self.enc_user = embedding(self.user,
vocab_size=len(user2idx),
num_units=hp.hidden_units,
zero_pad=False,
scale=True,
scope="enc_user_embed",
reuse=not is_training)
# enc_item = [batch_size, seq_len, hidden_units]
self.enc_item = embedding(self.item_cand,
vocab_size=len(item2idx),
num_units=hp.hidden_units,
zero_pad=False,
scale=True,
scope='enc_item_embed',
reuse=not is_training)
self.enc = tf.concat([tf.stack(hp.seq_length * [self.enc_user], axis=1), self.enc_item], axis=2)
## Dropout
self.enc = tf.layers.dropout(self.enc,
rate=hp.dropout_rate,
training=tf.convert_to_tensor(is_training))
if hp.use_mha:
## Blocks
for i in range(hp.num_blocks):
with tf.variable_scope("num_blocks_{}".format(i)):
### Multihead Attention
self.enc = multihead_attention(queries=self.enc,
keys=self.enc,
num_units=hp.hidden_units*2,
num_heads=hp.num_heads,
dropout_rate=hp.dropout_rate,
is_training=is_training,
causality=False)
### Feed Forward
self.enc = feedforward(self.enc, num_units=[4*hp.hidden_units, hp.hidden_units*2])
else:
cell = tf.nn.rnn_cell.GRUCell(num_units=hp.hidden_units * 2)
outputs, _ = tf.nn.dynamic_rnn(cell=cell, inputs=self.enc, dtype=tf.float32)
self.enc = outputs
# Decoder
with tf.variable_scope("decoder"):
dec_cell = LSTMCell(hp.hidden_units*2)
if hp.num_layers > 1:
cells = [dec_cell] * hp.num_layers
dec_cell = MultiRNNCell(cells)
# ptr sampling
enc_init_state = trainable_initial_state(hp.batch_size, dec_cell.state_size)
sampled_logits, sampled_path, _ = ptn_rnn_decoder(
dec_cell, None,
self.enc, enc_init_state,
hp.seq_length, hp.res_length, hp.hidden_units*2,
hp.num_glimpse, hp.batch_size,
mode="SAMPLE", reuse=False, beam_size=None)
# logits: [batch_size, res_length, seq_length]
self.sampled_logits = tf.identity(sampled_logits, name="sampled_logits")
# sample_path: [batch_size, res_length]
self.sampled_path = tf.identity(sampled_path, name="sampled_path")
self.sampled_result = batch_gather(self.item_cand, self.sampled_path)
# self.decode_target_ids is placeholder
decoder_logits, _ = ptn_rnn_decoder(
dec_cell, self.decode_target_ids,
self.enc, enc_init_state,
hp.seq_length, hp.res_length, hp.hidden_units*2,
hp.num_glimpse, hp.batch_size,
mode="TRAIN", reuse=True, beam_size=None)
self.dec_logits = tf.identity(decoder_logits, name="dec_logits")
supervised_logits, _ = ptn_rnn_decoder(
dec_cell, self.card_idx,
self.enc, enc_init_state,
hp.seq_length, hp.res_length, hp.hidden_units*2,
hp.num_glimpse, hp.batch_size,
mode="TRAIN", reuse=True, beam_size=None)
self.supervised_logits = tf.identity(supervised_logits, name="supervised_logits")
_, infer_path, _ = ptn_rnn_decoder(
dec_cell, None,
self.enc, enc_init_state,
hp.seq_length, hp.res_length, hp.hidden_units*2,
hp.num_glimpse, hp.batch_size,
mode="BEAMSEARCH", reuse=True, beam_size=hp.beam_size)
self.infer_path = tf.identity(infer_path, name="infer_path")
self.infer_result = batch_gather(self.item_cand, self.infer_path)
if is_training:
# Loss
# self.y_smoothed = label_smoothing(tf.one_hot(self.decode_target_ids, depth=hp.data_length))
self.r_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.dec_logits,
labels=self.decode_target_ids)
if hp.schedule_sampling:
self.s_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.dec_logits,
labels=self.card_idx)
else:
self.s_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.supervised_logits,
labels=self.card_idx)
# reinforcement
self.policy_loss = tf.reduce_mean(tf.reduce_sum(self.r_loss, axis=1) * self.reward)
# supervised loss
self.supervised_loss = tf.reduce_mean(tf.reduce_sum(self.s_loss, axis=1))
self.loss = (1.0 - hp.supervised_coe) * self.policy_loss + hp.supervised_coe * self.supervised_loss
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer(learning_rate=hp.lr_gen, beta1=0.9, beta2=0.98, epsilon=1e-8)
self.train_op = self.optimizer.minimize(self.loss, global_step=self.global_step)
class Discriminator():
def __init__(self, is_training=True, is_testing=False):
if is_training and is_testing:
raise TypeError('is_training and is_testing cannot be both true!')
if is_training:
self.user, self.card, self.label, self.num_batch = get_dis_batch_data(is_training=True)
elif is_testing:
self.user, self.card, self.label, self.num_batch = get_dis_batch_data(is_training=False)
else:
self.user = tf.placeholder(tf.int32, shape=(hp.batch_size,))
self.card = tf.placeholder(tf.int32, shape=(hp.batch_size, hp.res_length))
# Load vocabulary
user2idx, idx2user = load_user_vocab()
item2idx, idx2item = load_item_vocab()
## Embedding
# enc_user = [batch_size, hidden_units]
self.enc_user = embedding(self.user,
vocab_size=len(user2idx),
num_units=hp.hidden_units,
zero_pad=False,
scale=True,
scope="enc_user_embed",
reuse= not is_training)
# enc_card_pos = [batch_size, res_len, hidden_units]
self.enc_card = embedding(self.card,
vocab_size=len(item2idx),
num_units=hp.hidden_units,
zero_pad=False,
scale=True,
scope='enc_card_embed',
reuse=not is_training)
## Dropout
self.enc_user = tf.layers.dropout(self.enc_user,
rate=hp.dropout_rate,
training=tf.convert_to_tensor(is_training))
self.enc_card = tf.layers.dropout(self.enc_card,
rate=hp.dropout_rate,
training=tf.convert_to_tensor(is_training))
self.dis_logits = ctr_dicriminator(self.enc_user, self.enc_card,
hidden_dim=hp.dis_hidden_size)
self.dis_probs = tf.sigmoid(self.dis_logits)
self.dis_reward = (self.dis_probs - 0.5) * 2.0
if is_training or is_testing:
self.dis_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=self.label,
logits=self.dis_logits))
self.dis_acc = tf.reduce_mean(tf.to_float(tf.equal(tf.to_float(tf.greater_equal(self.dis_probs, 0.5)),
self.label)))
if is_training:
# Training Scheme
self.global_step = tf.Variable(0, name='global_step', trainable=False)
self.optimizer = tf.train.AdamOptimizer(learning_rate=hp.lr_dis, beta1=0.9, beta2=0.98, epsilon=1e-8)
self.train_op = self.optimizer.minimize(self.dis_loss, global_step=self.global_step)