-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathhyperparams.py
57 lines (45 loc) · 1.54 KB
/
hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
#/usr/bin/python2
class Hyperparams:
'''Hyperparameters'''
# data
data_set = 'ml100k-10c'
gen_data_train = 'data/' + data_set + '/rerank_data_10c_train.txt'
gen_data_test = 'data/' + data_set + '/rerank_data_10c_test.txt'
dis_data_train = 'data/' + data_set + '/dis_data_10c_train.txt'
dis_data_test = 'data/' + data_set + '/dis_data_10c_test.txt'
user_ids_file = 'data/' + data_set + '/user_ids.txt'
item_ids_file = 'data/' + data_set + '/item_ids.txt'
# training
batch_size = 32 # alias = N
num_glimpse = 1
beam_size = 3
num_layers = 1 # rnn layer num
seq_length = 50 # encoder length
res_length = 10
lr_dis = 0.001 # learning rate.
lr_gen = 0.001
logdir = 'logdir' # log directory
print_per_step = 10
test_per_step = 10
gen_num_epochs = 5
dis_num_epochs = 1
# hill climbling
is_hill_climbing = True
num_hill_climb = 32 # sample大小,目前仅支持batch_size的倍数
top_k_candidate = 3 # top k candidate的大小
# model
hidden_units = 16 # alias = C, for embedding size and rnn cell
dis_hidden_size = 128 # for discriminator
num_blocks = 2 # number of encoder/decoder blocks
num_heads = 2
dropout_rate = 0.1
supervised_coe = 1.0
schedule_sampling = True
use_mha = False
use_dis_reward = True
# log print
gen_train_log_path = 'gen_train_log.txt'
gen_test_log_path = 'gen_test_log.txt'
dis_train_log_path = 'dis_train_log.txt'
dis_test_log_path = 'dis_test_log.txt'