-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathperceptual_networks.py
79 lines (73 loc) · 2.57 KB
/
perceptual_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import torch.nn as nn
import torchvision.models as models
# Dictionary off torchvision models and the attribute 'paths' to their features
architecture_features = {
'alexnet' : ['features'],
'vgg11' : ['features'],
'vgg11_bn' : ['features'],
'vgg13' : ['features'],
'vgg13_bn' : ['features'],
'vgg16' : ['features'],
'vgg16_bn' : ['features'],
'vgg19' : ['features'],
'vgg19_bn' : ['features'],
'densenet121' : ['features'],
'densenet161' : ['features'],
'densenet169' : ['features'],
'densenet201' : ['features'],
'resnet18' : [],
'resnet34' : [],
'resnet50' : [],
'resnet101' : [],
'resnet152' : [],
'wide_resnet50_2' : [],
'wide_resnet101_2' : [],
'shufflenet_v2_x1_0' : [],
'shufflenet_v2_x2_0' : [],
'mobilenet_v2' : ['features'],
'googlenet' : [],
'inception_v3' : [],
'squeezenet1_0' : ['features'],
'squeezenet1_1' : ['features']
}
def AlexNet(layer=5, pretrained=True, frozen=True, sigmoid_out=True):
return SimpleExtractor('alexnet',layer,frozen,sigmoid_out)
class SimpleExtractor(nn.Module):
'''
A simple feature extractor for torchvision models
Args:
architecture (str): The architecture to extract from
layer (int): The sub-module in 'features' to extract at
frozen (bool): Whether the network can be trained
sigmoid_out (bool): Whether to normalize the output with a sigmoid
'''
def __init__(self, architecture, layer, frozen=True, sigmoid_out=True):
super(SimpleExtractor, self).__init__()
self.architecture = architecture
self.layer = layer
self.frozen = frozen
self.sigmoid_out = sigmoid_out
os.environ['TORCH_HOME'] = './'
original_model = models.__dict__[architecture](pretrained=True)
original_features = original_model
for attribute in architecture_features[architecture]:
original_features = getattr(original_features, attribute)
self.features = nn.Sequential(
*list(original_features.children())[:layer]
)
if sigmoid_out:
self.features.add_module('sigmoid',nn.Sigmoid())
if frozen:
self.eval()
for param in self.features.parameters():
param.requires_grad = False
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
return x
def __str__(self):
return (
f'{self.architecture}(layer={self.layer}, '
f'frozen={self.frozen}, sigmoid_out={self.sigmoid_out})'
)