forked from remlapmot/mrrobust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mregger.sthlp
234 lines (185 loc) · 8.72 KB
/
mregger.sthlp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
{smcl}
{* *! version 0.1.0 04jun2016 Tom Palmer}{...}
{viewerjumpto "Syntax" "mregger##syntax"}{...}
{viewerjumpto "Description" "mregger##description"}{...}
{viewerjumpto "Options" "mregger##options"}{...}
{viewerjumpto "Examples" "mregger##examples"}{...}
{viewerjumpto "Stored results" "mregger##results"}{...}
{viewerjumpto "References" "mregger##references"}{...}
{viewerjumpto "Author" "mregger##author"}{...}
{title:Title}
{p 5}
{bf:mregger} {hline 2} Mendelian randomization Egger regression
{p_end}
{marker syntax}{...}
{title:Syntax}
{p 8 16 2}
{opt mregger} {var:_gd} {var:_gp} [{it:aweight}] {ifin}
[{cmd:,} {it:options}]
{synoptset 20 tabbed}{...}
{synopthdr}
{synoptline}
{synopt :{opt fe:}}Fixed effect standard errors (default is multiplicative)
{p_end}
{synopt :{opt gxse(varname)}}variable of genotype-phenotype SEs{p_end}
{synopt:{opt het:erogi}}Display heterogeneity/pleiotropy
statistics{p_end}
{synopt :{opt ivw:}}Inverse-variance weighted estimator (default is MR-Egger)
{p_end}
{synopt :{opt l:evel(#)}}set confidence level; default is {cmd:level(95)}{p_end}
{synopt:{opt noresc:ale}}Do not rescale residual variance to be 1 (if less than 1){p_end}
{synopt :{opt penw:eighted}}Use penalized weights{p_end}
{synopt :{opt re:}}random effects version of the estimators{p_end}
{synopt :{opt recons:}}random intercept in an MR-Egger model{p_end}
{synopt :{opt reslope:}}random slope in an MR-Egger model{p_end}
{synopt:{opt tdist:}}Use t-distribution for Wald test and CI limits{p_end}
{synopt :{opt *:}}extra options passed to {cmd:gsem} for random effects
estimation{p_end}
{marker description}{...}
{title:Description}
{pstd}
{cmd:mregger} performs inverse-variance weighted (IVW) and Mendelian
randomization Egger (MR-Egger) regression using summary level data
(i.e. reported genotype-disease and phenotype-disease association estimates
and their standard errors for individual genotypes).
{pstd}
See {browse "http://dx.doi.org/10.1093/ije/dyv080":Bowden et al., Int J Epi, 2015}
, for more information.
{pstd}
{var:_gd} variable containing the genotype-disease association estimates.
{pstd}
{var:_gp} variable containing the genotype-phenotype association estimates.
{pstd}
For the analytic weights you need to specify the inverse of the
genotype-disease standard errors squared, i.e. aw=1/(gdse^2).
{marker options}{...}
{title:Options}
{phang}
{opt fe} specifies fixed effect standard errors (i.e. variance of residuals
constrained to 1 as in fixed effect meta-analysis models). The default is
to use multiplicative standard errors (i.e. variance of residuals
unconstrained as in standard linear regression), see Thompson and Sharp
(1999) for further details. We recommend specifying this option when using an allelic score as the instrumental variable.
{phang}
{opt gxse(varname)} specifies the variable containing the genotype-phenotype
association standard errors. These are required for calculating the I^2_GX
statistic (Bowden et al., 2016). An I^2_GX statistic of 90% means that the
likely bias due measurement error in the MR-Egger slope estimate is around
10%. If I^2_GX values are less than 90% estimates should be treated with
caution.
{phang}
{opt het:erogi} suppresses display of heterogeneity/pleiotropy
statistics. In the heterogeneity output
the model based Q-statistic is reported by multiplying the variance of the
residuals by the degrees of freedom (Del Greco et al., 2015).
{phang}
{opt ivw} specifies IVW model, the default is MR-Egger.
{phang}
{opt level(#)}; see {helpb estimation options##level():[R] estimation options}.
{phang}
{opt noresc:ale} specifies that the residual variance is not set to 1 (if
it is found to be less than 1). Bowden et al. (2016) rescale the residual
variance to be 1 if it is found to be less than 1.
{phang}
{opt penw:eighted} specifies using penalized weights as described in Burgess
et al. (2016).
{phang}
{opt re} specifies random effects versions of the models. In the random
effects output the Ms are the random effects (hence we only estimate their
variance/covariance). If only {opt re} is specificed by default both the
slope and intercept are included as random effects. Requires Stata version 13
or higher (as this uses {cmd:gsem}).
{phang}
{opt recons} specifies a random intercept in the model. Can be specified with
{opt reslope}. Not allowed with {opt ivw} (as there is no constant in the
model).
{phang}
{opt reslope} specifies a random slope in the model. Can be specified with
{opt recons}.
{phang}
{opt tdist} specifies using the t-distribution, instead of the normal
distribution, for calculating the Wald test and the confidence interval limits.
{phang}
{opt *} extra options passed through to the {cmd:gsem} command,
see {help gsem_command:gsem}.
{marker examples}{...}
{title:Example 1}
{pstd}Using the data provided by Do et al., Nat Gen, 2013 recreate Bowden et
al., Gen Epi, 2016, Table 4, LDL-c "All genetic variants" estimates.{p_end}
{pstd}Setup{p_end}
{phang2}{cmd:.} {stata "use https://raw.github.com/remlapmot/mrmedian/master/dodata, clear"}{p_end}
{pstd}Select observations ({it:p}-value with exposure < 10^-8){p_end}
{phang2}{cmd:.} {stata "gen byte sel1 = (ldlcp2 < 1e-8)"}{p_end}
{pstd}IVW{p_end}
{phang2}{cmd:.} {stata "mregger chdbeta ldlcbeta [aw=1/(chdse^2)] if sel1==1, ivw"}{p_end}
{pstd}MR-Egger{p_end}
{phang2}{cmd:.} {stata "mregger chdbeta ldlcbeta [aw=1/(chdse^2)] if sel1==1"}{p_end}
{pstd}MR-Egger with fixed effect standard errors{p_end}
{phang2}{cmd:.} {stata "mregger chdbeta ldlcbeta [aw=1/(chdse^2)] if sel1==1, fe"}{p_end}
{pstd}MR-Egger reporting {it:I^2_GX} statistic{p_end}
{phang2}{cmd:.} {stata "mregger chdbeta ldlcbeta [aw=1/(chdse^2)] if sel1==1, gxse(ldlcse)"}{p_end}
{pstd}MR-Egger with fixed effect standard errors and t-distribution
CI limits{p_end}
{phang2}{cmd:.} {stata "mregger chdbeta ldlcbeta [aw=1/(chdse^2)] if sel1==1, fe tdist"}{p_end}
{marker results}{...}
{title:Stored results}
{pstd}
{cmd:mregger} stores the following in {cmd:e()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Scalars}{p_end}
{synopt:{cmd:e(df_r)}}residual degrees of freedom (with {cmd:tdist}
option){p_end}
{synopt:{cmd:e(k)}}number of instruments{p_end}
{synopt:{cmd:e(I2GX)}}I^2_GX (with {cmd:gxse()} option){p_end}
{synoptset 20 tabbed}{...}
If {opt re} is not specified:
{p2col 5 20 24 2: Macros}{p_end}
{synopt:{cmd:e(cmd)}}{cmd:mregger}{p_end}
{synopt:{cmd:e(cmdline)}}command as typed{p_end}
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:e(b)}}coefficient vector{p_end}
{synopt:{cmd:e(V)}}variance-covariance matrix of the estimates{p_end}
{pstd}
If {opt re} is specified {cmd:mregger} additionally returns the e-class
results from {cmd:gsem}.
{pstd}
If {opt heterogi} is specified {cmd:mregger}
additionally returns the r-class results of {cmd:heterogi} in the e-class
results.
{marker references}{...}
{title:References}
{marker bowden}{...}
{phang}
Bowden J, Davey Smith G, Burgess S. 2015.
Mendelian randomization with invalid instruments: effect estimation and bias
detection through Egger regression. International Journal of Epidemiology.
{browse "http://dx.doi.org/10.1093/ije/dyv080":DOI}
{p_end}
{phang}
Bowden J, Davey Smith G, Haycock PC, Burgess S. 2016. Consistent estimation
in Mendelian randomization with some invalid instruments using a weighted
median estimator. Genetic Epidemiology, published online 7 April.
{browse "http://dx.doi.org/10.1002/gepi.21965":DOI}
{phang}
Bowden J, Del Greco F, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. 2016. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I-squared statistic.
International Journal of Epidemiology. {browse "http://dx.doi.org/10.1093/ije/dyw220":DOI}
{phang}
Burgess S, Bowden J, Dudbridge F, Thompson SG. 2016. Robust instrumental
variable methods using candidate instruments with application to Mendelian
randomization. arXiv:1606.03729v1.
{browse "https://arxiv.org/abs/1606.03729":Link}
{phang}
Del Greco F M, Minelli C, Sheehan NA, Thompson JR. 2015. Detecting pleiotropy in
Mendelian randomization studies with summary data and a continuous outcome.
Statistics in Medicine, 34, 21, 2926-2940.
{browse "http://dx.doi.org/10.1002/sim.6522":DOI}
{p_end}
{phang}
Thompson SG, Sharp SJ. 1999. Explaining heterogeneity in meta-analysis: a
comparison of methods. Statistics in Medicine, 18, 20, 2693-2708.
{browse "http://dx.doi.org/10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V":DOI}
{p_end}
{marker author}
{title:Author}
{phang}Tom Palmer