Skip to content
/ BPAD Public

Survey and Benchmark of Anomaly Detection in Business Processes

Notifications You must be signed in to change notification settings

guanwei49/BPAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Survey and Benchmark of Anomaly Detection in Business Processes

This is the source code of our paper 'Survey and Benchmark of Anomaly Detection in Business Processes'.

Abstract: Effective management of business processes is crucial for organizational success. However, despite meticulous design and implementation, anomalies are inevitable and can result in inefficiencies, delays, or even significant financial losses. Numerous methods for detecting anomalies in business processes have been proposed recently. However, there is no comprehensive benchmark to evaluate these methods. Consequently, the relative merits of each method remain unclear due to differences in their experimental setup, choice of datasets and evaluation measures. In this paper, we present a systematic literature review and taxonomy of business process anomaly detection methods. Additionally, we select at least one method from each category, resulting in 16 methods that are cross-benchmarked against 32 synthetic logs and 19 real-life logs from different industry domains. Our analysis provides insights into the strengths and weaknesses of different anomaly detection methods. Ultimately, our findings can help researchers and practitioners in the field of process mining make informed decisions when selecting and applying anomaly detection methods to real-life business scenarios. Finally, some future directions are discussed in order to promote the evolution of business process anomaly detection.

Appendix Tables

A1.png A2.png A3.png A4.png A5.png

Studied Models

Fourteen unsupervised methods

Model Year Perspective Granularity Paper
Naive 2013 Control-flow Trace-level Algorithms for Anomaly Detection of Traces in Logs of Process Aware Information Systems
Sampling 2013 Control-flow Trace-level Algorithms for Anomaly Detection of Traces in Logs of Process Aware Information Systems
Likelihood 2016 Multi-perspective Attribute-level Multi-perspective Anomaly Detection in Business Process Execution Events
DAE 2018 Multi-perspective Attribute-level Analyzing Business Process Anomalies Using Autoencoders
BINetv2 2018 Multi-perspective Attribute-level BINet: Multivariate Business Process Anomaly Detection Using Deep Learning
VAE 2019 Multi-perspective Attribute-level Autoencoders for Improving Quality of Process Event Logs
LAE 2019 Multi-perspective Attribute-level Autoencoders for Improving Quality of Process Event Logs
W2V-LOF 2020 Control-flow Trace-level Anomaly Detection on Event Logs with a Scarcity of Labels
VAE-OCSVM 2021 Control-flow Trace-level Variational Autoencoder for Anomaly Detection in Event Data in Online Process Mining
GAE 2021 Multi-perspective Trace-level Graph Autoencoders for Business Process Anomaly Detection
Leverage 2022 Control-flow Trace-level Keeping Our Rivers Clean: Information-Theoretic Online Anomaly Detection for Streaming Business Process Events
BINetv3 2022 Multi-perspective Attribute-level BINet: Multi-perspective Business Process Anomaly Classification
GRASPED 2023 Multi-perspective Attribute-level GRASPED: A GRU-AE Network Based Multi-Perspective Business Process Anomaly Detection Model
GAMA 2024 Multi-perspective Attribute-level GAMA: A Multi-graph-based Anomaly Detection Framework for Business Processes via Graph Neural Networks

Two weakly-supervised methods

Model Year Perspective Granularity Paper
DRL 2023 Control-flow Trace-level Deep Reinforcement Learning for Data-efficient Weakly Supervised Business Process Anomaly Detection
WAKE 2024 Multi-perspective Attribute-level WAKE: A Weakly Supervised Business Process Anomaly Detection Framework via a Pre-Trained Autoencoder

In general, 10% of anomalies are labeled during training in these weakly-supervised methods.

Requirements

Win

Linux

Examples

```
python \generator\gen_anomalous_eventlog_syn.py  # Generate synthetic datasets (event logs) containing anomalies and save them into the 'eventlogs' directory.
python \generator\gen_anomalous_real_life_log.py  # Generate real-life datasets (event logs) containing anomalies and save them into the 'eventlogs' directory.
python main_unsup.py # get the result for each unsupervised method.
python main_weakly.py # get the result for each weakly-supervised method.
```

Datasets

Nine commonly used real-life datasets:

i) BPIC12: Event log of a loan application process

ii) BPIC13: Logs of Volvo IT incident and problem management.

iii) BPIC15: This data is provided by five Dutch municipalities. The data contains all building permit applications over a period of approximately four years.

iv) BPIC17: This event log pertains to a loan application process of a Dutch financial institute. The data contains all applications filed through an online system in 2016 and their subsequent events until February 1st 2017, 15:11.

v) BPIC20: The dataset contains events pertaining to two years of travel expense claims. In 2017, events were collected for two departments, in 2018 for the entire university.

vi) Billing: This log contains events that pertain to the billing of medical services provided by a hospital.

vii) Receipt: This log contains records of the receiving phase of the building permit application process in an anonymous municipality.

viii) RTFMP: Real-life event log of an information system managing road traffic fines.

ix) Sepsis: This log contains events of sepsis cases from a hospital.

Eight synthetic logs: i.e., Paper, P2P, Small, Medium, Large, Huge, Gigantic, and Wide.

The summary of statistics for each event log (without anomalies) is presented below:

Log #Activities #Traces #Events Max trace length Min trace length #Attributes #Attribute values
Gigantic 76-78 5000 28243-31989 11 3 1-4 70-363
Huge 54 5000 36377-42999 11 5 1-4 69-340
Large 42 5000 51099-56850 12 10 1-4 68-292
Medium 32 5000 28416-31372 8 3 1-4 66-276
P2P 13 5000 37941-42634 11 7 1-4 39-146
Paper 14 5000 49839-54390 12 9 1-4 36-128
Small 20 5000 42845-46060 10 7 1-4 39-144
Wide 23-34 5000 29128-31228 7 5-6 1-4 53-264
BPIC12 36 13087 262200 175 3 0 0
BPIC13_C 7 1487 6660 35 1 4 638
BPIC13_I 13 7554 65533 123 1 4 2144
BPIC13_O 5 819 2351 22 1 2 251
BPIC15_1 398 1199 52217 101 2 2 49
BPIC15_2 410 832 44354 132 1 2 20
BPIC15_3 383 1409 59681 124 3 3 419
BPIC15_4 356 1053 47293 116 1 2 22
BPIC15_5 389 1156 59083 154 5 2 38
BPIC17 26 31509 1202267 180 10 1 149
BPIC20_D 17 10500 56437 24 1 2 9
BPIC20_I 34 6449 72151 27 3 2 10
BPIC20_PE 51 7065 86581 90 3 2 10
BPIC20_PR 29 2099 18246 21 1 2 10
BPIC20_R 19 6886 36796 20 1 2 10
Billing 18 100000 451359 217 1 0 0
Receipt 27 1434 8577 25 1 2 58
RTFMP 11 150370 561470 20 2 0 0
Sepsis 16 1050 15214 185 3 1 26

To simulate anomalous behavior, we inject artificial anomalies of six different types, with a proportion of $\rho$ percent (i.e., $\rho$ percent of the traces are anomalous) into both synthetic and real-life logs.
In our experiments, we assess the scalability of methods by considering values of $\rho$ at 5, 10, 15, 20, 25, 30, 35, 40, and 45. To provide clarity, we define these anomaly types as follows: anomaly_type.png

  • Skip: Bypassing a series of up to two events.
  • Insert: Interjecting a series of up to two random events.
  • Rework: Repeatedly carrying out a series of up to three events.
  • Early: Executing up to two events prematurely, causing them to be bypassed at their subsequent designated point.
  • Late: Postponing the execution of up to two events, causing them to be bypassed at their earlier designated point.
  • Attribute: In up to two certain events, substituting the correct values of certain attributes with erroneous ones.

Experiment Results

Critical difference diagram over trace-level anomaly detection (F-score) : model

Critical difference diagram over attribute-level anomaly detection (F-score ): model

Critical difference diagram over trace-level anomaly detection (AP) : model

Critical difference diagram over attribute-level anomaly detection (AP): model

F-score of trace-level anomaly detection:

Gigantic Huge Large Medium P2P Paper Small Wide BPIC12 BPIC13_C BPIC13_I BPIC13_O BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC17 BPIC20_D BPIC20_I BPIC20_PE BPIC20_PR BPIC20_R Billing Receipt RTFMP Sepsis
Naive 0.726 0.884 0.907 0.840 0.901 0.908 0.909 0.901 0.451 0.474 0.464 0.417 0.396 0.384 0.395 0.385 0.383 0.484 0.803 0.696 0.620 0.727 0.797 0.789 0.722 0.882 0.414
Sampling 0.819 0.892 0.909 0.859 0.889 0.901 0.897 0.890 0.413 0.454 0.428 0.390 0.390 0.383 0.387 0.384 0.383 0.394 0.737 0.506 0.456 0.642 0.746 0.701 0.664 0.724 0.386
Leverage 0.763 0.895 0.914 0.868 0.901 0.908 0.908 0.898 0.512 0.539 0.525 0.446 0.000 0.000 0.000 0.000 0.000 0.411 0.816 0.691 0.580 0.727 0.805 0.476 0.755 0.916 0.417
Likelihood 0.739 0.875 0.894 0.841 0.941 0.950 0.967 0.869 0.773 0.383 0.420 0.322 0.445 0.426 0.459 0.452 0.453 0.512 0.902 0.826 0.741 0.813 0.884 0.867 0.594 0.906 0.568
W2V-LOF 0.668 0.804 0.833 0.762 0.796 0.846 0.829 0.808 0.461 0.454 0.457 0.392 0.400 0.400 0.431 0.415 0.409 0.475 0.581 0.615 0.571 0.649 0.589 0.395 0.694 0.343 0.433
VAE-OCSVM 0.385 0.378 0.383 0.382 0.379 0.381 0.382 0.379 0.331 0.335 0.383 0.271 0.393 0.386 0.389 0.391 0.385 0.383 0.379 0.385 0.385 0.386 0.378 0.254 0.377 0.257 0.380
GAE 0.509 0.475 0.593 0.506 0.614 0.535 0.526 0.641 0.411 0.406 0.394 0.343 0.392 0.386 0.392 0.390 0.386 0.383 0.554 0.420 0.405 0.463 0.549 0.381 0.413 0.436 0.387
DAE 0.751 0.804 0.836 0.848 0.867 0.892 0.910 0.876 0.585 0.443 0.469 0.444 0.402 0.399 0.403 0.403 0.401 0.414 0.873 0.586 0.558 0.596 0.850 0.731 0.648 0.861 0.495
VAE 0.571 0.625 0.749 0.698 0.667 0.820 0.781 0.725 0.576 0.417 0.412 0.443 0.401 0.396 0.405 0.403 0.397 0.404 0.663 0.488 0.466 0.486 0.604 0.593 0.615 0.845 0.491
LAE 0.463 0.501 0.511 0.542 0.586 0.618 0.596 0.534 0.862 0.402 0.400 0.463 0.403 0.416 0.400 0.423 0.398 0.386 0.880 0.702 0.613 0.666 0.847 0.798 0.485 0.834 0.519
BINetv2 0.511 0.552 0.541 0.534 0.581 0.557 0.563 0.527 0.709 0.334 0.582 0.282 0.399 0.385 0.396 0.388 0.393 0.667 0.843 0.775 0.769 0.787 0.835 0.710 0.441 0.762 0.396
BINetv3 0.531 0.538 0.564 0.572 0.557 0.564 0.578 0.554 0.669 0.374 0.556 0.298 0.398 0.386 0.397 0.387 0.388 0.665 0.809 0.769 0.768 0.749 0.843 0.724 0.447 0.792 0.400
GRASPED 0.745 0.852 0.883 0.807 0.910 0.934 0.921 0.839 0.700 0.528 0.534 0.431 0.462 0.474 0.458 0.481 0.480 0.735 0.784 0.748 0.711 0.716 0.848 0.264 0.624 0.257 0.454
GAMA 0.826 0.905 0.905 0.869 0.942 0.948 0.959 0.917 0.773 0.550 0.582 0.460 0.451 0.462 0.480 0.456 0.453 0.745 0.935 0.849 0.797 0.783 0.921 0.744 0.727 0.869 0.523
DRL 0.633 0.620 0.624 0.676 0.686 0.707 0.741 0.683 0.569 0.376 0.405 0.296 0.397 0.397 0.394 0.396 0.391 0.416 0.511 0.398 0.389 0.394 0.459 0.882 0.524 0.936 0.412
WAKE 0.905 0.926 0.942 0.937 0.959 0.961 0.971 0.957 0.888 0.463 0.539 0.415 0.404 0.403 0.410 0.403 0.401 0.803 0.941 0.822 0.747 0.702 0.930 0.927 0.573 0.968 0.455

F-score of attribute-level anomaly detection:

Gigantic Huge Large Medium P2P Paper Small Wide BPIC12 BPIC13_C BPIC13_I BPIC13_O BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC17 BPIC20_D BPIC20_I BPIC20_PE BPIC20_PR BPIC20_R Billing Receipt RTFMP Sepsis
Likelihood 0.470 0.571 0.587 0.559 0.647 0.645 0.659 0.569 0.531 0.102 0.080 0.129 0.117 0.108 0.140 0.137 0.124 0.174 0.610 0.505 0.438 0.514 0.606 0.640 0.278 0.691 0.380
DAE 0.193 0.216 0.216 0.245 0.257 0.244 0.261 0.255 0.291 0.218 0.147 0.183 0.102 0.101 0.084 0.122 0.158 0.234 0.361 0.209 0.200 0.209 0.330 0.432 0.170 0.511 0.184
VAE 0.184 0.206 0.205 0.233 0.226 0.200 0.211 0.246 0.338 0.193 0.158 0.191 0.081 0.108 0.080 0.107 0.130 0.135 0.202 0.154 0.159 0.159 0.185 0.416 0.147 0.563 0.181
LAE 0.344 0.394 0.430 0.436 0.529 0.533 0.510 0.447 0.477 0.226 0.207 0.211 0.184 0.252 0.197 0.355 0.234 0.169 0.497 0.447 0.457 0.487 0.479 0.452 0.385 0.439 0.320
BINetv2 0.308 0.342 0.329 0.320 0.346 0.335 0.362 0.323 0.504 0.072 0.258 0.087 0.020 0.010 0.049 0.022 0.013 0.370 0.571 0.521 0.502 0.528 0.561 0.497 0.141 0.559 0.060
BINetv3 0.322 0.339 0.340 0.355 0.336 0.338 0.365 0.344 0.470 0.102 0.264 0.076 0.021 0.012 0.022 0.016 0.019 0.366 0.535 0.482 0.468 0.485 0.553 0.513 0.157 0.581 0.066
GRASPED 0.579 0.636 0.646 0.597 0.582 0.635 0.593 0.552 0.503 0.528 0.406 0.379 0.385 0.376 0.410 0.387 0.398 0.533 0.468 0.511 0.498 0.466 0.507 0.018 0.479 0.029 0.324
GAMA 0.667 0.712 0.718 0.671 0.687 0.712 0.728 0.689 0.563 0.395 0.300 0.377 0.297 0.338 0.400 0.328 0.305 0.485 0.618 0.593 0.554 0.653 0.618 0.496 0.561 0.607 0.412
WAKE 0.600 0.708 0.710 0.638 0.644 0.685 0.667 0.644 0.491 0.486 0.261 0.394 0.402 0.419 0.455 0.453 0.437 0.489 0.372 0.570 0.466 0.584 0.467 0.109 0.564 0.114 0.474

Average precision (AP) of trace-level anomaly detection:

Gigantic Huge Large Medium P2P Paper Small Wide BPIC12 BPIC13_C BPIC13_I BPIC13_O BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC17 BPIC20_D BPIC20_I BPIC20_PE BPIC20_PR BPIC20_R Billing Receipt RTFMP Sepsis
Naive 0.794 0.893 0.906 0.871 0.887 0.894 0.893 0.899 0.321 0.345 0.344 0.301 0.263 0.252 0.260 0.252 0.250 0.355 0.767 0.623 0.512 0.658 0.756 0.694 0.602 0.851 0.281
Sampling 0.756 0.846 0.875 0.818 0.850 0.864 0.859 0.848 0.276 0.315 0.298 0.255 0.258 0.251 0.253 0.251 0.250 0.260 0.610 0.361 0.315 0.491 0.622 0.550 0.522 0.575 0.253
Leverage 0.827 0.897 0.907 0.887 0.887 0.894 0.893 0.897 0.449 0.544 0.502 0.432 0.000 0.000 0.000 0.000 0.000 0.295 0.785 0.697 0.561 0.681 0.760 0.387 0.698 0.889 0.305
Likelihood 0.800 0.927 0.946 0.905 0.975 0.982 0.989 0.932 0.831 0.274 0.309 0.211 0.365 0.344 0.416 0.375 0.379 0.504 0.909 0.855 0.754 0.829 0.895 0.821 0.564 0.893 0.615
W2V-LOF 0.617 0.734 0.775 0.712 0.752 0.801 0.781 0.759 0.402 0.359 0.370 0.288 0.302 0.316 0.373 0.338 0.340 0.430 0.472 0.523 0.521 0.563 0.483 0.280 0.618 0.258 0.363
VAE-OCSVM 0.241 0.229 0.225 0.239 0.231 0.222 0.226 0.233 0.190 0.217 0.247 0.169 0.263 0.265 0.247 0.246 0.245 0.242 0.235 0.240 0.236 0.244 0.232 0.148 0.240 0.150 0.238
GAE 0.459 0.416 0.617 0.411 0.615 0.537 0.494 0.648 0.386 0.334 0.321 0.237 0.259 0.255 0.271 0.255 0.258 0.256 0.452 0.301 0.296 0.316 0.434 0.290 0.284 0.396 0.278
DAE 0.805 0.852 0.896 0.900 0.923 0.940 0.955 0.931 0.578 0.344 0.444 0.339 0.280 0.272 0.278 0.273 0.277 0.325 0.822 0.517 0.465 0.493 0.777 0.604 0.587 0.845 0.436
VAE 0.570 0.640 0.798 0.727 0.705 0.886 0.864 0.785 0.646 0.329 0.310 0.344 0.283 0.273 0.300 0.280 0.280 0.313 0.678 0.389 0.414 0.425 0.624 0.645 0.580 0.911 0.448
LAE 0.397 0.439 0.457 0.548 0.652 0.676 0.631 0.528 0.866 0.317 0.299 0.373 0.281 0.300 0.281 0.310 0.278 0.264 0.874 0.707 0.629 0.639 0.832 0.789 0.432 0.790 0.468
BINetv2 0.534 0.598 0.596 0.583 0.639 0.620 0.609 0.581 0.736 0.181 0.546 0.169 0.283 0.267 0.287 0.291 0.277 0.690 0.834 0.835 0.821 0.815 0.849 0.645 0.330 0.695 0.311
BINetv3 0.542 0.579 0.614 0.622 0.611 0.616 0.619 0.598 0.682 0.269 0.535 0.206 0.287 0.270 0.289 0.271 0.276 0.689 0.799 0.827 0.817 0.778 0.799 0.688 0.323 0.724 0.311
GRASPED 0.824 0.924 0.941 0.885 0.961 0.977 0.966 0.907 0.735 0.556 0.579 0.427 0.480 0.459 0.491 0.503 0.508 0.796 0.755 0.800 0.758 0.727 0.839 0.160 0.644 0.156 0.470
GAMA 0.902 0.959 0.953 0.935 0.978 0.980 0.985 0.964 0.854 0.559 0.615 0.452 0.440 0.459 0.488 0.470 0.453 0.800 0.946 0.916 0.869 0.835 0.942 0.723 0.775 0.850 0.552
DRL 0.648 0.623 0.645 0.697 0.687 0.688 0.727 0.686 0.588 0.330 0.312 0.197 0.279 0.295 0.269 0.291 0.259 0.340 0.419 0.281 0.268 0.296 0.352 0.875 0.473 0.915 0.342
WAKE 0.943 0.964 0.973 0.967 0.982 0.981 0.987 0.982 0.901 0.477 0.577 0.377 0.333 0.346 0.375 0.356 0.360 0.841 0.941 0.863 0.769 0.734 0.941 0.925 0.569 0.972 0.444

Average precision (AP) of attribute-level anomaly detection:

Gigantic Huge Large Medium P2P Paper Small Wide BPIC12 BPIC13_C BPIC13_I BPIC13_O BPIC15_1 BPIC15_2 BPIC15_3 BPIC15_4 BPIC15_5 BPIC17 BPIC20_D BPIC20_I BPIC20_PE BPIC20_PR BPIC20_R Billing Receipt RTFMP Sepsis
Likelihood 0.414 0.500 0.493 0.511 0.559 0.555 0.565 0.523 0.453 0.044 0.027 0.060 0.039 0.042 0.065 0.050 0.043 0.100 0.547 0.428 0.353 0.433 0.545 0.533 0.183 0.609 0.332
DAE 0.113 0.164 0.149 0.192 0.199 0.181 0.198 0.200 0.198 0.145 0.080 0.124 0.030 0.028 0.025 0.029 0.057 0.140 0.314 0.182 0.147 0.183 0.289 0.365 0.109 0.469 0.118
VAE 0.110 0.125 0.117 0.150 0.133 0.128 0.137 0.162 0.271 0.130 0.092 0.123 0.025 0.033 0.020 0.032 0.043 0.066 0.142 0.096 0.093 0.089 0.133 0.412 0.080 0.596 0.107
LAE 0.290 0.352 0.395 0.396 0.487 0.512 0.480 0.404 0.457 0.137 0.093 0.138 0.067 0.115 0.102 0.200 0.131 0.058 0.489 0.451 0.417 0.482 0.498 0.314 0.309 0.292 0.181
BINetv2 0.258 0.301 0.288 0.291 0.312 0.303 0.331 0.297 0.425 0.026 0.140 0.034 0.007 0.004 0.016 0.006 0.005 0.266 0.485 0.476 0.440 0.480 0.497 0.368 0.070 0.418 0.033
BINetv3 0.271 0.303 0.304 0.323 0.302 0.307 0.330 0.313 0.386 0.045 0.150 0.029 0.008 0.004 0.009 0.005 0.007 0.264 0.442 0.440 0.409 0.431 0.456 0.402 0.073 0.449 0.030
GRASPED 0.553 0.626 0.640 0.567 0.537 0.603 0.560 0.516 0.413 0.473 0.300 0.313 0.287 0.252 0.310 0.298 0.308 0.461 0.280 0.462 0.443 0.455 0.356 0.005 0.478 0.015 0.279
GAMA 0.666 0.718 0.716 0.682 0.689 0.721 0.737 0.690 0.524 0.350 0.252 0.332 0.209 0.250 0.316 0.246 0.222 0.422 0.541 0.592 0.555 0.639 0.573 0.366 0.555 0.484 0.363
WAKE 0.566 0.696 0.706 0.602 0.608 0.665 0.636 0.597 0.398 0.413 0.171 0.359 0.306 0.337 0.396 0.369 0.353 0.379 0.226 0.499 0.374 0.522 0.303 0.041 0.543 0.048 0.445

To Cite Our Paper

@ARTICLE{10738505,
  author={Guan, Wei and Cao, Jian and Zhao, Haiyan and Gu, Yang and Qian, Shiyou},
  journal={IEEE Transactions on Knowledge and Data Engineering}, 
  title={Survey and Benchmark of Anomaly Detection in Business Processes}, 
  year={2024},
  volume={},
  number={},
  pages={1-23},
  keywords={Business;Anomaly detection;Surveys;Benchmark testing;Process control;Streams;Process mining;Source coding;Organizations;Measurement;Business process;anomaly detection;event log quality;process mining},
  doi={10.1109/TKDE.2024.3484159}}

About

Survey and Benchmark of Anomaly Detection in Business Processes

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages