forked from zingale/planet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bc_fill_2d.F90
438 lines (313 loc) · 13.2 KB
/
bc_fill_2d.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
module bc_fill_module
implicit none
public
contains
subroutine ca_hypfill(adv,adv_l1,adv_l2,adv_h1,adv_h2, &
domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
use meth_params_module, only : NVAR, URHO, UMX, UMY, UEDEN, UEINT, &
UFS, UTEMP, const_grav
use interpolate_module
use eos_module
use network, only: nspec
use model_parser_module
use bl_error_module
include 'bc_types.fi'
integer adv_l1,adv_l2,adv_h1,adv_h2
integer bc(2,2,*)
integer domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision adv(adv_l1:adv_h1,adv_l2:adv_h2,NVAR)
integer i,j,q,n
double precision y
double precision pres_above,p_want,pres_zone
double precision temp_zone,X_zone(nspec),dens_zone
double precision :: y_base, dens_base, slope
type (eos_t) :: eos_state
do n = 1,NVAR
call filcc(adv(adv_l1,adv_l2,n),adv_l1,adv_l2,adv_h1,adv_h2, &
domlo,domhi,delta,xlo,bc(1,1,n))
enddo
do n = 1, NVAR
! XLO
if ( bc(1,1,n).eq.EXT_DIR .and. adv_l1.lt.domlo(1)) then
! we are periodic in x -- we should never get here
call bl_error("ERROR: invalid BC in Prob_2d.f90")
end if
! XHI
if ( bc(1,2,n).eq.EXT_DIR .and. adv_h1.gt.domhi(1)) then
! we are periodic in x -- we should never get here
call bl_error("ERROR: invalid BC in Prob_2d.f90")
end if
enddo
! YLO -- HSE with linear density profile, T found via iteration
! we do all variables at once here
if ( bc(2,1,1).eq.EXT_DIR .and. adv_l2.lt.domlo(2)) then
y_base = xlo(2) + delta(2)*(float(domlo(2)-adv_l2) + 0.5d0)
do i=adv_l1,adv_h1
dens_base = adv(i,domlo(2),URHO)
! density slope
slope = (adv(i,domlo(2)+1,URHO) - adv(i,domlo(2),URHO))/delta(2)
! this do loop counts backwards since we want to work downward
do j=domlo(2)-1,adv_l2,-1
y = xlo(2) + delta(2)*(float(j-adv_l2) + 0.5d0)
! zero-gradient catch-all -- this will get the radiation
! energy
adv(i,j,:) = adv(i,j+1,:)
! HSE integration to get temperature, pressure
! density is linear from the last two zones
dens_zone = dens_base + slope*(y - y_base)
! temperature guess and species held constant in BCs
temp_zone = adv(i,j+1,UTEMP)
X_zone(:) = adv(i,j+1,UFS:UFS-1+nspec)/adv(i,j+1,URHO)
! get pressure in zone above
eos_state%rho = adv(i,j+1,URHO)
eos_state%T = adv(i,j+1,UTEMP)
eos_state%xn(:) = adv(i,j+1,UFS:UFS-1+nspec)/adv(i,j+1,URHO)
call eos(eos_input_rt, eos_state)
pres_above = eos_state%p
! pressure needed from HSE
p_want = pres_above - &
delta(2)*0.5d0*(dens_zone + adv(i,j+1,URHO))*const_grav
! EOS with HSE pressure + linear density profile yields T, e, ...
eos_state%rho = dens_zone
eos_state%T = temp_zone ! guess
eos_state%xn(:) = X_zone(:)
eos_state%p = p_want
call eos(eos_input_rp, eos_state)
! velocity
if (zero_vels) then
! zero normal momentum causes pi waves to pass through
adv(i,j,UMY) = 0.d0
! zero transverse momentum
adv(i,j,UMX) = 0.d0
else
! zero gradient velocity
adv(i,j,UMX) = dens_zone*(adv(i,domlo(2),UMX)/adv(i,domlo(2),URHO))
adv(i,j,UMY) = dens_zone*(adv(i,domlo(2),UMY)/adv(i,domlo(2),URHO))
endif
adv(i,j,URHO) = dens_zone
adv(i,j,UEINT) = dens_zone*eos_state%e
adv(i,j,UEDEN) = dens_zone*eos_state%e + &
0.5d0*(adv(i,j,UMX)**2+adv(i,j,UMY)**2)/dens_zone
adv(i,j,UTEMP) = eos_state%T
adv(i,j,UFS:UFS-1+nspec) = dens_zone*X_zone(:)
end do
end do
end if
! YHI
do n = 1, nvar
if ( bc(2,2,n).eq.EXT_DIR .and. adv_h2.gt.domhi(2)) then
do j=domhi(2)+1,adv_h2
y = xlo(2) + delta(2)*(float(j-adv_l2) + 0.5d0)
! zero-gradient catch-all -- this will get the radiation
! energy
adv(adv_l1:adv_h1,j,:) = adv(adv_l1:adv_h1,j-1,:)
do i=adv_l1,adv_h1
! set all the variables even though we're testing on URHO
if (n .eq. URHO) then
dens_zone = interpolate(y,npts_model,model_r, &
model_state(:,idens_model))
temp_zone = interpolate(y,npts_model,model_r, &
model_state(:,itemp_model))
do q = 1, nspec
X_zone(q) = interpolate(y,npts_model,model_r, &
model_state(:,ispec_model-1+q))
enddo
! extrap normal momentum
adv(i,j,UMY) = max(0.d0,adv(i,domhi(2),UMY))
! zero transverse momentum
adv(i,j,UMX) = 0.d0
eos_state%rho = dens_zone
eos_state%T = temp_zone
eos_state%xn(:) = X_zone
call eos(eos_input_rt, eos_state)
adv(i,j,URHO) = dens_zone
adv(i,j,UEINT) = dens_zone*eos_state%e
adv(i,j,UEDEN) = dens_zone*eos_state%e + &
0.5d0*(adv(i,j,UMX)**2+adv(i,j,UMY)**2)/dens_zone
adv(i,j,UTEMP) = temp_zone
adv(i,j,UFS:UFS-1+nspec) = dens_zone*X_zone(:)
end if
end do
end do
end if
end do
end subroutine ca_hypfill
subroutine ca_denfill(adv,adv_l1,adv_l2,adv_h1,adv_h2, &
domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
use meth_params_module, only : NVAR, URHO, UMX, UMY, UEDEN, UEINT, &
UFS, UTEMP, const_grav
use bl_error_module
use interpolate_module
use model_parser_module
implicit none
include 'bc_types.fi'
integer adv_l1,adv_l2,adv_h1,adv_h2
integer bc(2,2,*)
integer domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision adv(adv_l1:adv_h1,adv_l2:adv_h2)
integer i,j,q,n
double precision y
double precision :: y_base, dens_base, slope
double precision TOL
! Note: this function should not be needed, technically, but is
! provided to filpatch because there are many times in the algorithm
! when just the density is needed. We try to rig up the filling so
! that the same function is called here and in hypfill where all the
! states are filled.
call filcc(adv,adv_l1,adv_l2,adv_h1,adv_h2,domlo,domhi,delta,xlo,bc)
! XLO
if ( bc(1,1,1).eq.EXT_DIR .and. adv_l1.lt.domlo(1)) then
call bl_error("We shoundn't be here (xlo denfill)")
end if
! XHI
if ( bc(1,2,1).eq.EXT_DIR .and. adv_h1.gt.domhi(1)) then
call bl_error("We shoundn't be here (xlo denfill)")
endif
! YLO
if ( bc(2,1,1).eq.EXT_DIR .and. adv_l2.lt.domlo(2)) then
y_base = xlo(2) + delta(2)*(float(domlo(2)-adv_l2) + 0.5d0)
do i=adv_l1,adv_h1
dens_base = adv(i,domlo(2))
! density slope
slope = (adv(i,domlo(2)+1) - adv(i,domlo(2)))/delta(2)
! this do loop counts backwards since we want to work downward
do j=domlo(2)-1,adv_l2,-1
y = xlo(2) + delta(2)*(float(j-adv_l2) + 0.5d0)
! density is linear from the last two zones
adv(i,j) = dens_base + slope*(y - y_base)
end do
end do
end if
! YHI
if ( bc(2,2,1).eq.EXT_DIR .and. adv_h2.gt.domhi(2)) then
do j=domhi(2)+1,adv_h2
y = xlo(2) + delta(2)*(float(j-adv_l2)+ 0.5d0)
do i=adv_l1,adv_h1
adv(i,j) = interpolate(y,npts_model,model_r,model_state(:,idens_model))
end do
end do
end if
end subroutine ca_denfill
subroutine ca_gravxfill(grav,grav_l1,grav_l2,grav_h1,grav_h2, &
domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
implicit none
include 'bc_types.fi'
integer :: grav_l1,grav_l2,grav_h1,grav_h2
integer :: bc(2,2,*)
integer :: domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision grav(grav_l1:grav_h1,grav_l2:grav_h2)
integer :: i, j
call filcc(grav,grav_l1,grav_l2,grav_h1,grav_h2,domlo,domhi,delta,xlo,bc)
! our lower boundary is inflow, so we need to make sure the
! gravitational acceleration is set correctly there
! YLO
if ( bc(2,1,1).eq.EXT_DIR .and. grav_l2.lt.domlo(2)) then
do j=grav_l2,domlo(2)-1
do i=grav_l1,grav_h1
grav(i,j) = 0.0
end do
end do
end if
end subroutine ca_gravxfill
subroutine ca_gravyfill(grav,grav_l1,grav_l2,grav_h1,grav_h2, &
domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
use meth_params_module, only: const_grav
implicit none
include 'bc_types.fi'
integer :: grav_l1,grav_l2,grav_h1,grav_h2
integer :: bc(2,2,*)
integer :: domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision grav(grav_l1:grav_h1,grav_l2:grav_h2)
integer :: i, j
call filcc(grav,grav_l1,grav_l2,grav_h1,grav_h2,domlo,domhi,delta,xlo,bc)
! our lower boundary is inflow, so we need to make sure the
! gravitational acceleration is set correctly there
! YLO
if ( bc(2,1,1).eq.EXT_DIR .and. grav_l2.lt.domlo(2)) then
do j=grav_l2,domlo(2)-1
do i=grav_l1,grav_h1
grav(i,j) = const_grav
end do
end do
end if
end subroutine ca_gravyfill
subroutine ca_gravzfill(grav,grav_l1,grav_l2,grav_h1,grav_h2, &
domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
use meth_params_module, only: const_grav
implicit none
include 'bc_types.fi'
integer :: grav_l1,grav_l2,grav_h1,grav_h2
integer :: bc(2,2,*)
integer :: domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision grav(grav_l1:grav_h1,grav_l2:grav_h2)
integer :: i, j
call filcc(grav,grav_l1,grav_l2,grav_h1,grav_h2,domlo,domhi,delta,xlo,bc)
! our lower boundary is inflow, so we need to make sure the
! gravitational acceleration is set correctly there
! YLO
if ( bc(2,1,1).eq.EXT_DIR .and. grav_l2.lt.domlo(2)) then
do j=grav_l2,domlo(2)-1
do i=grav_l1,grav_h1
grav(i,j) = 0.0
end do
end do
end if
end subroutine ca_gravzfill
subroutine ca_reactfill(react,react_l1,react_l2, &
react_h1,react_h2,domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
implicit none
include 'bc_types.fi'
integer :: react_l1,react_l2,react_h1,react_h2
integer :: bc(2,2,*)
integer :: domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision react(react_l1:react_h1,react_l2:react_h2)
call filcc(react,react_l1,react_l2,react_h1,react_h2,domlo,domhi,delta,xlo,bc)
end subroutine ca_reactfill
subroutine ca_radfill(rad,rad_l1,rad_l2, &
rad_h1,rad_h2,domlo,domhi,delta,xlo,time,bc) bind(C)
use probdata_module
implicit none
include 'bc_types.fi'
integer :: rad_l1,rad_l2,rad_h1,rad_h2
integer :: bc(2,2,*)
integer :: domlo(2), domhi(2)
double precision delta(2), xlo(2), time
double precision rad(rad_l1:rad_h1,rad_l2:rad_h2)
integer :: j
call filcc(rad,rad_l1,rad_l2,rad_h1,rad_h2,domlo,domhi,delta,xlo,bc)
! we are inflow at the lower boundary, so we need to take the appropriate
! action for the radiation here (during the hydro step)
! this do loop counts backwards since we want to work downward
if ( bc(2,1,1).eq.EXT_DIR .and. rad_l2.lt.domlo(2)) then
do j=domlo(2)-1,rad_l2,-1
! zero-gradient catch-all -- this will get the radiation
! energy
rad(rad_l1:rad_h1,j) = rad(rad_l1:rad_h1,j+1)
enddo
endif
end subroutine ca_radfill
subroutine ca_phigravfill(phi,phi_l1,phi_l2, &
phi_h1,phi_h2,domlo,domhi,delta,xlo,time,bc) bind(C)
implicit none
include 'bc_types.fi'
integer :: phi_l1,phi_l2,phi_h1,phi_h2
integer :: bc(2,2,*)
integer :: domlo(2), domhi(2)
double precision :: delta(2), xlo(2), time
double precision :: phi(phi_l1:phi_h1,phi_l2:phi_h2)
call filcc(phi,phi_l1,phi_l2,phi_h1,phi_h2, &
domlo,domhi,delta,xlo,bc)
end subroutine ca_phigravfill
end module bc_fill_module