-
-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtext_predictor.py
110 lines (94 loc) · 3.99 KB
/
text_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import tensorflow as tf
from data_provider import DataProvider
from rnn_model import RNNModel
import sys
import matplotlib
import numpy as np
import time
matplotlib.use("Agg")
import matplotlib.pyplot as plt
# Args
if len(sys.argv) != 2:
print "Please select a dataset."
print "Usage: python text_predictor.py <dataset>"
print "Available datasets: kanye, shakespeare, wikipedia, reuters, hackernews, war_and_peace, sherlock"
exit(1)
else:
dataset = sys.argv[1]
# I/O
data_dir = "./data/" + dataset
tensorboard_dir = data_dir + "/tensorboard/" + str(time.strftime("%Y-%m-%d_%H-%M-%S"))
input_file = data_dir + "/input.txt"
output_file = data_dir + "/output.txt"
output = open(output_file, "w")
output.close()
# Hyperparams
BATCH_SIZE = 32
SEQUENCE_LENGTH = 25
LEARNING_RATE = 0.01
DECAY_RATE = 0.97
HIDDEN_LAYER_SIZE = 256
CELLS_SIZE = 2
TEXT_SAMPLE_LENGTH = 500
SAMPLING_FREQUENCY = 1000
LOGGING_FREQUENCY = 1000
def rnn():
data_provider = DataProvider(data_dir, BATCH_SIZE, SEQUENCE_LENGTH)
model = RNNModel(data_provider.vocabulary_size, batch_size=BATCH_SIZE, sequence_length=SEQUENCE_LENGTH, hidden_layer_size=HIDDEN_LAYER_SIZE, cells_size=CELLS_SIZE)
with tf.Session() as sess:
summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter(tensorboard_dir)
writer.add_graph(sess.graph)
sess.run(tf.global_variables_initializer())
epoch = 0
temp_losses = []
smooth_losses = []
while True:
sess.run(tf.assign(model.learning_rate, LEARNING_RATE * (DECAY_RATE ** epoch)))
data_provider.reset_batch_pointer()
state = sess.run(model.initial_state)
for batch in range(data_provider.batches_size):
inputs, targets = data_provider.next_batch()
feed = {model.input_data: inputs, model.targets: targets}
for index, (c, h) in enumerate(model.initial_state):
feed[c] = state[index].c
feed[h] = state[index].h
iteration = epoch * data_provider.batches_size + batch
summary, loss, state, _ = sess.run([summaries, model.cost, model.final_state, model.train_op], feed)
writer.add_summary(summary, iteration)
temp_losses.append(loss)
if iteration % SAMPLING_FREQUENCY == 0:
sample_text(sess, data_provider, iteration)
if iteration % LOGGING_FREQUENCY == 0:
smooth_loss = np.mean(temp_losses)
smooth_losses.append(smooth_loss)
temp_losses = []
plot(smooth_losses, "iterations (thousands)", "loss")
print('{{"metric": "iteration", "value": {}}}'.format(iteration))
print('{{"metric": "epoch", "value": {}}}'.format(epoch))
print('{{"metric": "loss", "value": {}}}'.format(smooth_loss))
epoch += 1
def sample_text(sess, data_provider, iteration):
model = RNNModel(data_provider.vocabulary_size, batch_size=1, sequence_length=1, hidden_layer_size=HIDDEN_LAYER_SIZE, cells_size=CELLS_SIZE, training=False)
text = model.sample(sess, data_provider.chars, data_provider.vocabulary, TEXT_SAMPLE_LENGTH).encode("utf-8")
output = open(output_file, "a")
output.write("Iteration: " + str(iteration) + "\n")
output.write(text + "\n")
output.write("\n")
output.close()
def plot(data, x_label, y_label):
plt.plot(range(len(data)), data)
plt.title(dataset)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.savefig(data_dir + "/" + y_label + ".png", bbox_inches="tight")
plt.close()
if __name__ == '__main__':
print "Selected dataset: " + str(dataset)
print "Batch size: " + str(BATCH_SIZE)
print "Sequence length: " + str(SEQUENCE_LENGTH)
print "Learning rate: " + str(LEARNING_RATE)
print "Decay rate: " + str(DECAY_RATE)
print "Hidden layer size: " + str(HIDDEN_LAYER_SIZE)
print "Cells size: " + str(CELLS_SIZE)
rnn()