-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_classifier.py
130 lines (105 loc) · 4.26 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import math
import os.path
import numpy as np
import torch
import torchvision
import torch.optim as optim
import torch.nn as nn
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from torchvision.models import GoogLeNet_Weights
from datasets import GroceryStoreDataset
from tqdm import tqdm
TEST_TRANSFORM = transforms.Compose([
transforms.Resize((256, 256)), # resize the image to 256x256 pixels
transforms.CenterCrop((224, 224)),
transforms.ToTensor(), # convert the image to a PyTorch tensor
# transforms.Normalize(mean=mean, std=std) # normalize the image
])
trainset = GroceryStoreDataset(split='train', transform=TRAIN_TRANSFORM)
valset = GroceryStoreDataset(split='val', transform=TEST_TRANSFORM)
num_classes = len(trainset.classes)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=6)
valloader = DataLoader(valset, batch_size=32, shuffle=True, num_workers=6)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(f'Running on {device}...')
model = torchvision.models.densenet121(pretrained=True).to(device)
# model = torchvision.models.resnet18().to(device)
model.classifier = nn.Linear(
1024, num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adamax(model.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.01, patience=3, verbose=True)
if os.path.exists('classifier.pth'):
model.load_state_dict(torch.load('classifier.pth'))
epochs = 10
print('''
#################################################################
# #
# Training Started #
# #
#################################################################
''')
losses = []
val_losses = []
acc = 0
# training loop
model.train()
for epoch in range(epochs):
running_loss = 0.0
pbar = tqdm(trainloader, desc=f'Epoch {epoch + 1}/{epochs}', unit='batch')
for i, data in enumerate(pbar):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
pbar.set_postfix({'loss': running_loss / (i + 1), 'val_accuracy': acc})
if i == len(trainloader) - 1:
if losses:
if losses[-1] < running_loss:
print("Possible overfit...")
losses.append(running_loss/(i+1))
model.eval()
correct = 0
val_loss = 0
total = 0
with torch.no_grad():
for idx, data in enumerate(valloader):
images, val_labels = data
images = images.to(device)
val_labels = val_labels.to(device)
val_outputs = model(images)
_, predicted = torch.max(val_outputs.data, 1)
val_loss += criterion(val_outputs, val_labels).item()
total += val_labels.size(0)
correct += (predicted == val_labels).sum().item()
acc = 100 * correct / total
val_loss /= idx+1
val_losses.append(val_loss)
model.train()
scheduler.step(val_loss)
print(''''
#################################################################
# #
# Training Completed #
# #
#################################################################
''')
torch.save(model.state_dict(), 'classifier.pth')
print('''
#################################################################
# #
# Model Saved #
# #
#################################################################
''')
x = np.linspace(0, epochs, epochs)
fig, ax = plt.subplots()
ax.plot(x, losses, label="training loss")
ax.plot(x, val_losses, label="validation loss")
ax.legend()
plt.savefig('train_results.png')