-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclf_test.py
274 lines (227 loc) · 11.1 KB
/
clf_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Core libraries
import os
import argparse
from PIL import Image
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset, WeightedRandomSampler
# PyTorch Lightning
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import ModelCheckpoint, RichProgressBar
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
# Torchvision
from torchvision import transforms, models
from torchvision.utils import save_image
# Visualization & Metrics
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import precision_recall_curve, f1_score, confusion_matrix
# Include the GroceryDataModule and LitModel class definitions from your code snippet here
class GroceryStoreDataset(Dataset):
# directory structure:
# - root/[train/test/val]/[vegetable/fruit/packages]/[vegetables/fruit/packages]_class/[vegetables/fruit/packages]_subclass/[vegetables/fruit/packages]_image.jpg
# - root/classes.csv
# - root/train.txt
# - root/test.txt
# - root/val.txt
def __init__(self, split='test', transform=None):
super(GroceryStoreDataset, self).__init__()
self.root = "/work/cvcs_2023_group23/GroceryStoreDataset/dataset/"
self.split = split
self.transform = transform
self.class_to_idx = {}
self.idx_to_class = {}
self._descriptions = {}
classes_file = os.path.join(self.root, "classes.csv")
self.classes = {'42': 'background'}
with open(classes_file, "r") as f:
lines = f.readlines()
for line in lines[1:]:
class_name, class_id, coarse_class_name, coarse_class_id, iconic_image_path, prod_description = line.strip().split(
",")
self.classes[class_id] = class_name
self.class_to_idx[class_name] = coarse_class_id
self.idx_to_class[class_id] = class_name
self._descriptions[class_name] = prod_description
self.samples = []
split_file = os.path.join(self.root, self.split + ".txt")
# print(self.classes)
with open(split_file, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip()
img_path, class_id, coarse_class_id = line.split(",")
class_name = self.classes[class_id.strip()]
self.samples.append(
(os.path.join(self.root, img_path), int(self.class_to_idx[class_name])))
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
img_path, label = self.samples[idx]
img = Image.open(img_path).convert('RGB')
if self.transform:
img = self.transform(img)
# print(img.shape, label)
return img, label
def description(self, class_name):
return self._descriptions[class_name]
class GroceryDataModule(pl.LightningDataModule):
def __init__(self, batch_size, data_dir):
super().__init__()
self.batch_size = batch_size
self.data_dir = data_dir
self.transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
# Consider adding normalization if necessary
])
self.grocery_train, self.grocery_test, self.grocery_val = None, None, None
def setup(self, stage=None):
# Assign training/validation datasets for use in dataloaders
if stage == 'fit' or stage is None:
self.grocery_train = GroceryStoreDataset(split='train', transform=self.transform)
self.class_weights = self.calculate_class_weights()
self.grocery_val = GroceryStoreDataset(split='val', transform=self.transform)
# Assign test dataset for use in dataloader(s)
if stage == 'test' or stage is None:
self.grocery_test = GroceryStoreDataset(split='test', transform=self.transform)
def calculate_class_weights(self):
# Count the number of instances of each class
class_counts = torch.zeros(43)
for _, label in self.grocery_train:
class_counts[label] += 1
# Inverse of counts to get weights
class_weights = 1. / class_counts
return class_weights
def train_dataloader(self):
sample_weights = [self.class_weights[label] for _, label in self.grocery_train]
weighted_sampler = WeightedRandomSampler(weights=sample_weights, num_samples=len(sample_weights), replacement=True)
return DataLoader(self.grocery_train, batch_size=self.batch_size, sampler=weighted_sampler)
def val_dataloader(self):
return DataLoader(self.grocery_val, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.grocery_test, batch_size=self.batch_size)
class LitModel(pl.LightningModule):
def __init__(self, num_classes=43, learning_rate=1e-3):
super().__init__()
# for param in self.model.parameters():
# param.requires_grad = False
self.model = models.densenet121(pretrained=True)
num_ftrs = self.model.classifier.in_features # Get the number of features of the last layer
self.model.classifier = nn.Linear(num_ftrs, num_classes) # Update classifier
# Make sure the classifier parameters are set to require gradients
# for param in self.model.classifier.parameters():
# param.requires_grad = True
self.criterion = nn.CrossEntropyLoss()
self.learning_rate = learning_rate
def forward(self, x):
return self.model(x)
def configure_optimizers(self):
optimizer = optim.Adamax(self.parameters(), lr=self.learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=3)
return {"optimizer": optimizer, "lr_scheduler": scheduler, "monitor": "val_loss"}
def training_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self(inputs)
loss = self.criterion(outputs, labels)
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self(inputs)
loss = self.criterion(outputs, labels)
# Calculate accuracy
_, predicted = torch.max(outputs, 1)
correct = (predicted == labels).sum().item()
accuracy = correct / labels.size(0)
self.log('val_loss', loss, on_epoch=True, prog_bar=True)
self.log('val_accuracy', accuracy, on_epoch=True, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
inputs, labels = batch
outputs = self(inputs)
loss = self.criterion(outputs, labels)
self.log('test_loss', loss)
# Compute top-k accuracies
top1_acc = self.compute_topk_accuracy(outputs, labels, k=1)
top3_acc = self.compute_topk_accuracy(outputs, labels, k=3)
top5_acc = self.compute_topk_accuracy(outputs, labels, k=5)
self.log_dict({'test_top1_acc': top1_acc, 'test_top3_acc': top3_acc, 'test_top5_acc': top5_acc})
# Add preds and labels to output
_, preds = torch.max(outputs, dim=1)
return {'test_loss': loss, 'preds': preds, 'labels': labels, 'test_top1_acc': top1_acc, 'test_top3_acc': top3_acc, 'test_top5_acc': top5_acc}
def compute_topk_accuracy(self, outputs, labels, k=1):
_, top_k_predictions = outputs.topk(k, 1, True, True)
top_k_correct = top_k_predictions.eq(labels.view(-1, 1).expand_as(top_k_predictions))
top_k_correct_sum = top_k_correct.view(-1).float().sum(0)
return top_k_correct_sum.mul_(100.0 / labels.size(0))
def parse_arguments():
parser = argparse.ArgumentParser(description="Perform inference on test dataset.")
parser.add_argument("--model_checkpoint", type=str, required=True, help="Path to the model checkpoint.")
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save inference outputs.")
return parser.parse_args()
def save_results(predictions, labels, output_dir):
results = {"predictions": predictions, "labels": labels}
with open(os.path.join(output_dir, "inference_results.json"), "w") as f:
json.dump(results, f)
print("Inference results saved.")
def main():
args = parse_arguments()
# Ensure the output directory exists
os.makedirs(args.output_dir, exist_ok=True)
# Load the model from the checkpoint
model = LitModel.load_from_checkpoint(checkpoint_path=args.model_checkpoint).eval().to(device)
# Define test dataset and loader
test_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
])
test_dataset = GroceryStoreDataset(split='test', transform=test_transform)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
# Prepare lists to store predictions and their correctness
all_preds = []
all_labels = []
correctness_list = []
with torch.no_grad():
for i, (images, labels) in enumerate(test_loader):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# Convert logits to probabilities
probs = torch.nn.functional.softmax(outputs, dim=1)
# Get the top prediction for each input
_, top_preds = torch.max(probs, dim=1)
for j, image in enumerate(images):
# Find the predicted class name and the correctness for each image
pred_class_id = top_preds[j].item()
true_class_id = labels[j].item()
pred_class_name = test_dataset.idx_to_class[str(pred_class_id)]
is_correct = pred_class_id == true_class_id
# Append predictions and correctness to lists
all_preds.append(pred_class_id)
all_labels.append(true_class_id)
correctness_list.append(is_correct)
# Save the image with the inferred class and correctness in the filename
correctness_label = "correct" if is_correct else "incorrect"
save_path = os.path.join(args.output_dir, f"inferred_images/{i}_{j}_class_{pred_class_name}_{correctness_label}.jpg")
save_image(image.cpu(), save_path)
# After processing all images, save the results to a JSON file
results = {
"predictions": all_preds,
"labels": all_labels,
"correctness": correctness_list
}
results_path = os.path.join(args.output_dir, "inference_results.json")
with open(results_path, "w") as f:
json.dump(results, f)
print("Inference images and results saved.")
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Starting clf_test.py \n")
main()