Replies: 1 comment
-
Some scenarios for a hypothetical
append new edges: (g
.nodes(genes_df, 'id')
.edges(known_pathways_df, 'src', 'dst')
.umap(edge_merge='concat', type_tag='umap', col_prefix='umap_')
.scale(1.0) # should be responsive
).plot() reuse edges by sticking with either just updating existing (what happens in multiedges, just pick first?) , and optionally adding missing (g
.nodes(entities_df, 'id')
.edges(known_correlations_df, 'src', 'dst')
.umap(scale=1.0, edge_merge='inner' | 'upsert', type_tag='umap', out_cols={'weight': 'score'}) use UMAP for 'clustering on some node columns' but preserve existing edges, or at most augmenting them (g
.nodes(entities_df, 'id')
.edges(some_relns_df, 'src', 'dst')
.umap(use_cols=['feat1', 'feat2'], use_edges=True, scale=1.0, edge_merge='skip' | 'inner')
) use UMAP for community detection, without repositioning (g
.nodes(entities_df, 'id')
.edges(some_relns_df, 'src', 'dst')
.umap(use_edges=True, scale=1.0, edge_merge='skip', position=False)
.dbscan(use_cols=['x', 'y'], out_cols={'label': 'community', 'weight': 'community_distance'})
) |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
pygraphistry/graphistry/feature_utils.py
Line 1322 in 0f610e9
Beta Was this translation helpful? Give feedback.
All reactions