forked from jiadonglee/aspgap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
469 lines (355 loc) · 16.5 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import math
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from torch.nn import TransformerEncoderLayer, TransformerDecoderLayer
import copy
class PositionalEncoder(nn.Module):
def __init__(self, dropout: float=0.1, max_seq_len:int=5000, d_model:int=512, batch_first:bool=True
):
"""
Parameters:
dropout: the dropout rate
max_seq_len: the maximum length of the input sequences
d_model: The dimension of the output of sub-layers in the model
(Vaswani et al, 2017)
"""
super().__init__()
self.d_model = d_model
self.dropout = nn.Dropout(p=dropout)
self.batch_first = batch_first
self.x_dim = 1 if batch_first else 0
position = torch.arange(max_seq_len).unsqueeze(1)
if batch_first:
if d_model%2 == 0:
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0)/d_model))
pe = torch.zeros(1, max_seq_len, d_model)
else:
div_term = torch.exp(torch.arange(0, d_model+1, 2) * (-math.log(10000.0)/d_model))
pe = torch.zeros(1, max_seq_len, d_model+1)
pe[0,:,0::2] = torch.sin(position * div_term)
pe[0,:,1::2] = torch.cos(position * div_term)
else:
if d_model%2 == 0:
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0)/d_model))
pe = torch.zeros(max_seq_len, 1, d_model)
else:
div_term = torch.exp(torch.arange(0, d_model+1, 2) * (-math.log(10000.0)/d_model))
pe = torch.zeros(max_seq_len, 1, d_model+1)
pe[:,0,0::2] = torch.sin(position * div_term)
pe[:,0,1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor, shape [batch_size, enc_seq_len, dim_val] or
[enc_seq_len, batch_size, dim_val]
"""
if self.batch_first:
if self.d_model%2 == 0:
x = x + self.pe[:,:x.size(self.x_dim),:]
else:
x = x + self.pe[:,:x.size(self.x_dim),-1]
else:
if self.d_model%2 == 0:
x = x + self.pe[:x.size(self.x_dim)]
else:
x = x + self.pe[:x.size(self.x_dim)-1]
return self.dropout(x)
# def _get_clones(module, N):
# return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
# class TransformerEncoder(nn.Module):
# __constants__ = ['norm']
# def __init__(self, encoder_layer, num_layers, norm=None):
# super(TransformerEncoder, self).__init__()
# # self.layers = _get_clones(encoder_layer, num_layers)
# self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for i in range(num_layers)])
# self.num_layers = num_layers
# self.norm = norm
# def forward(self, src, mask=None, src_key_padding_mask=None):
# # type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tensor
# output = src
# weights = []
# for mod in self.layers:
# output, weight = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
# weights.append(weight)
# if self.norm is not None:
# output = self.norm(output)
# return output, weights
def loglikelihood(output, y):
y, output = y.reshape(-1,2), output.reshape(-1,2)
prlx_g, e_prlx_g = y[:,0], y[:,1]
prlx_t, e_prlx_t = output[:,0], output[:,1]
s = torch.log(torch.square(e_prlx_g)+torch.square(e_prlx_t))
return torch.mean(0.5*(prlx_g-prlx_t)**2 * torch.exp(-s) + 0.5*s)
def loglikelihood_ML(output, y):
y, output = y.reshape(-1,2), output.reshape(-1,2)
prlx_g, e_prlx_g = y[:,0], y[:,1]
prlx_t, e_prlx_t = output[:,0], output[:,1]
s = torch.log(torch.square(e_prlx_g)+torch.square(e_prlx_t))
return torch.sum(0.5*(prlx_g-prlx_t)**2 * torch.exp(-s) + 0.5*s)
class TransformerReg(nn.Module):
"""
A detailed description of the code can be found in my article here:
https://towardsdatascience.com/how-to-make-a-pytorch-transformer-for-time-series-forecasting-69e073d4061e
"""
def __init__(
self, input_size: int, batch_first: bool=True, out_seq_len:int=58, enc_seq_len:int=304, dec_seq_len: int=2, dim_val:int=512, n_encoder_layers:int=4, n_decoder_layers:int=4, n_heads:int=8,
dropout_encoder: float=0.2, dropout_decoder: float=0.2, dropout_pos_enc: float=0.1, num_predicted_features: int=1, max_seq_len: int=8 , dim_feedforward_encoder: int=2048, dim_feedforward_decoder: int=2048,
):
"""
Args:
input_size: int, number of input variables. 1 if univariate.
dec_seq_len: int, the length of the input sequence fed to the decoder
dim_val: int, aka d_model. All sub-layers in the model produce outputs of dimension dim_val
n_encoder_layers: int, number of stacked encoder layers in the encoder
n_decoder_layers: int, number of stacked encoder layers in the decoder
n_heads: int, the number of attention heads (aka parallel attention layers)
dropout_encoder: float, the dropout rate of the encoder
dropout_decoder: float, the dropout rate of the decoder
dropout_pos_enc: float, the dropout rate of the positional encoder
dim_feedforward_encoder: int, number of neurons in the linear layer of the encoder
dim_feedforward_decoder: int, number of neurons in the linear layer of the decoder
num_predicted_features: int, the number of features you want to predict. Most of the time, this will be 1.
"""
super().__init__()
self.dec_seq_len = dec_seq_len
self.enc_seq_len = enc_seq_len
self.dim_val = dim_val
self.output_sequence_length = out_seq_len
# Creating the three linear layers needed for the model
self.encoder_input_layer = nn.Linear(in_features=input_size, out_features=dim_val)
self.decoder_input_layer = nn.Linear(in_features=num_predicted_features, out_features=dim_val)
self.linear_mapping = nn.Linear(
in_features=dim_val*input_size, out_features=num_predicted_features
)
# Create positional encoder
self.positional_encoding_layer = PositionalEncoder(
d_model=dim_val, dropout=dropout_pos_enc, max_seq_len=max_seq_len
)
# The encoder layer used in the paper is identical to the one used by
# Vaswani et al (2017) on which the PyTorch module is based.
encoder_layer = nn.TransformerEncoderLayer(
d_model=dim_val, nhead=n_heads,
dim_feedforward=dim_feedforward_encoder, dropout=dropout_encoder,
batch_first=batch_first
)
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer, num_layers=n_encoder_layers,
)
decoder_layer = nn.TransformerDecoderLayer(
d_model=dim_val, nhead=n_heads,
dim_feedforward=dim_feedforward_decoder,
dropout=dropout_decoder, batch_first=batch_first
)
self.decoder = nn.TransformerDecoder(
decoder_layer=decoder_layer, num_layers=n_decoder_layers,
)
def forward(self, src:Tensor, tgt:Tensor=None, src_mask:Tensor=None, tgt_mask: Tensor=None)->Tensor:
"""
Returns a tensor of shape:
"""
src = self.encoder_input_layer(src)
src = self.positional_encoding_layer(src)
src = self.encoder(src) # src shape: [batch_size, enc_seq_len, dim_val]
decoder_output = self.decoder_input_layer(tgt) # src shape: [target sequence length, batch_size, dim_val] regardless of number of input features
decoder_output = self.decoder(
tgt=decoder_output, memory=src,
tgt_mask=tgt_mask, memory_mask=src_mask,
)
decoder_output = self.linear_mapping(decoder_output) # shape [batch_size, target seq len]
return decoder_output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float()*(-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
return x + self.pe[:x.size(0), :]
class TransAm(nn.Module):
def __init__(self, feature_size=64, nheads=8, enc_len=343, tgt_len=2, num_layers=1, dropout=0.1):
super(TransAm, self).__init__()
self.model_type = 'Transformer'
self.enc_len = enc_len
self.tgt_len = tgt_len
self.src_mask = None
self.nhead = nheads
self.pos_encoder = PositionalEncoding(feature_size)
self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=nheads, dropout=dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
self.decoder = nn.Linear(feature_size, 1)
self.linear_map = nn.Linear(enc_len, tgt_len)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self,src):
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
src = self.pos_encoder(src)
output = self.transformer_encoder(src,self.src_mask)
# print(output.shape)
output = self.decoder(output)
output = output.view(output.size(0), -1, self.enc_len)
output = self.linear_map(output)
return output.view(output.size(0), self.tgt_len, 1)
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def smape_loss(y_pred, target):
loss = 2 * (y_pred - target).abs() / (y_pred.abs() + target.abs() + 1e-8)
return loss.mean()
def gen_trg_mask(length, device):
mask = torch.tril(torch.ones(length, length, device=device)) == 1
mask = (
mask.float()
.masked_fill(mask == 0, float("-inf"))
.masked_fill(mask == 1, float(0.0))
)
return mask
class TimeSeriesForcasting(nn.Module):
def __init__(
self,
n_encoder_inputs,
n_decoder_inputs,
channels=512,
dropout=0.1,
lr=1e-4,
):
super().__init__()
self.save_hyperparameters()
self.lr = lr
self.dropout = dropout
self.input_pos_embedding = torch.nn.Embedding(1024, embedding_dim=channels)
self.target_pos_embedding = torch.nn.Embedding(1024, embedding_dim=channels)
encoder_layer = nn.TransformerEncoderLayer(
d_model=channels,
nhead=8,
dropout=self.dropout,
dim_feedforward=4 * channels,
)
decoder_layer = nn.TransformerDecoderLayer(
d_model=channels,
nhead=8,
dropout=self.dropout,
dim_feedforward=4 * channels,
)
self.encoder = torch.nn.TransformerEncoder(encoder_layer, num_layers=8)
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=8)
self.input_projection = nn.Linear(n_encoder_inputs, channels)
self.output_projection = nn.Linear(n_decoder_inputs, channels)
self.linear = nn.Linear(channels, 2)
self.do = nn.Dropout(p=self.dropout)
def encode_src(self, src):
src_start = self.input_projection(src).permute(1, 0, 2)
in_sequence_len, batch_size = src_start.size(0), src_start.size(1)
pos_encoder = (
torch.arange(0, in_sequence_len, device=src.device)
.unsqueeze(0)
.repeat(batch_size, 1)
)
pos_encoder = self.input_pos_embedding(pos_encoder).permute(1, 0, 2)
src = src_start + pos_encoder
src = self.encoder(src) + src_start
return src
def decode_trg(self, trg, memory):
trg_start = self.output_projection(trg).permute(1, 0, 2)
out_sequence_len, batch_size = trg_start.size(0), trg_start.size(1)
pos_decoder = (
torch.arange(0, out_sequence_len, device=trg.device)
.unsqueeze(0)
.repeat(batch_size, 1)
)
pos_decoder = self.target_pos_embedding(pos_decoder).permute(1, 0, 2)
trg = pos_decoder + trg_start
trg_mask = gen_trg_mask(out_sequence_len, trg.device)
out = self.decoder(tgt=trg, memory=memory, tgt_mask=trg_mask) + trg_start
out = out.permute(1, 0, 2)
out = self.linear(out)
return out
def forward(self, x):
src, trg = x
src = self.encode_src(src)
out = self.decode_trg(trg=trg, memory=src)
return out
def training_step(self, batch, batch_idx):
src, trg_in, trg_out = batch
y_hat = self((src, trg_in))
y_hat = y_hat.view(-1)
y = trg_out.view(-1)
loss = smape_loss(y_hat, y)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
src, trg_in, trg_out = batch
y_hat = self((src, trg_in))
y_hat = y_hat.view(-1)
y = trg_out.view(-1)
loss = smape_loss(y_hat, y)
self.log("valid_loss", loss)
return loss
def test_step(self, batch, batch_idx):
src, trg_in, trg_out = batch
y_hat = self((src, trg_in))
y_hat = y_hat.view(-1)
y = trg_out.view(-1)
loss = smape_loss(y_hat, y)
self.log("test_loss", loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.lr)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, patience=10, factor=0.1
)
return {
"optimizer": optimizer,
"lr_scheduler": scheduler,
"monitor": "valid_loss",
}
def infer(model: nn.Module, src: torch.Tensor, forecast_window:int, device,) -> torch.Tensor:
target_seq_dim = 1
tgt = src[:,-1,0].unsqueeze(0).unsqueeze(-1) # [bs, 1, 1]
# Iteratively concatenate tgt with the first element in the prediction
for _ in range(forecast_window-1):
dim_a = tgt.shape[1] #1,2,3,.. n
dim_b = src.shape[1] #30
src_mask = generate_square_subsequent_mask(dim1=dim_a, dim2=dim_b).to(device)
tgt_mask = generate_square_subsequent_mask(dim1=dim_a, dim2=dim_a).to(device)
prediction = model(src, tgt, src_mask, tgt_mask)
# Obtain the predicted value at t+1 where t is the last step
# represented in tgt
last_predicted_value = prediction[:,-1,:].view(-1,1,1) #[bs, 1]
# Reshape from [batch_size, 1] --> [1, batch_size, 1]
# last_predicted_value = last_predicted_value
print(tgt.size())
# Detach the predicted element from the graph and concatenate with
# tgt in dimension 1 or 0
tgt = torch.cat((tgt, last_predicted_value.detach()), target_seq_dim)
src_mask = generate_square_subsequent_mask(dim1=4, dim2=30).to(device)
tgt_mask = generate_square_subsequent_mask(dim1=4, dim2=4).to(device)
# Make final prediction
return model(src, tgt, src_mask, tgt_mask)
def generate_square_subsequent_mask(dim1: int, dim2: int) -> Tensor:
"""
Generates an upper-triangular matrix of -inf, with zeros on diag.
Modified from:
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
Args:
dim1: int, for both src and tgt masking, this must be target sequence
length
dim2: int, for src masking this must be encoder sequence length (i.e.
the length of the input sequence to the model),
and for tgt masking, this must be target sequence length
Return:
A Tensor of shape [dim1, dim2]
"""
return torch.triu(torch.ones(dim1, dim2) * float('-inf'), diagonal=1)