The code for our ACL18 paper "Character-Level Models versus Morphology in Semantic Role Labeling".
We provide sample training/testing scripts for different subword units under example_scripts folder.
Train SRL models on CoNLL-09 SRL training sets and test/evaluate trained models on CoNLL-09 evaluation sets for all languages.
-
simple_UNIT.sh: Trains/tests base SRL models for the given subword UNIT. Please check train.py for parameter descriptions.
-
ensemble_UNIT1_UNIT2_UNITn: Voting ensemble for the provided pretrained base SRL models (UNIT1, UNIT2, ..., UNITn).
-
sg_UNIT1_UNIT2_UNITn: Trains/tests a stack generalizer model from the predictions of pretrained base SRL models (UNIT1, UNIT2, ..., UNITn).
Language : Python 2.7
CUDA : Cuda compilation tools, release 8.0, V8.0.44
Libraries: PyTorch 0.2.0 post 3, numpy 1.13.0