-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_model_studio.R
47 lines (41 loc) · 1.42 KB
/
example_model_studio.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Trying this on my dataset for Kariki_Farm.
# Want to leanr how to use pipes, model XGBoost then use model studio
library(RoughSets)
library(RoughSetKnowledgeReduction)
library(googlesheets4)
library(arules)
library(dplyr)
library(RColorBrewer)
library(arulesViz)
k_farm <- read_sheet("https://docs.google.com/spreadsheets/d/1y29ch-sv9UXSZUX9mRxqx6NleN6-XO3ifXDqkDzeOiE/edit#gid=0") %>%
(n<-nrow(k_farm))%>%
c(as.character(k_farm$Date[1]), as.character(k_farm$Date[n])) %>%
head(k_farm$Rain) %>%
k_farm$Rain <- factor(k_farm$Rain) %>%
k_farm$Date <- as.Date(k_farm$Date, '%m/%d/%Y') %>%
str(k_farm) %>%
view(k_farm) %>%
(cols_withNa <- apply(k_farm, 2, function(x) sum(is.na(x)))) %>%
kariki_farm2 <- k_farm[complete.cases(k_farm),]
kariki_farm2
kariki_farm2$Date<-NULL
kariki_farm2$Windspeed_low <- NULL
kariki_farm2$Rain<-NULL
str(kariki_farm2)
kariki_farm2$Rain <- as.factor(kariki_farm2$Rain)
## Xgboost
karikiboost <- boost_tree(learn_rate = 0.3) %>%
set_mode("regression")%>%
set_engine("xgboost")%>%
fit(Precipitation_amount~., data = kariki_farm2)
karikiboost
## For model interpretability]
explainer_kariki <- DALEX::explain(
model = karikiboost,
data = kariki_farm2,
y = kariki_farm2$Precipitation_amount,
label = "XGBOOST"
)
# Running Model studio
modelStudio::modelStudio(explainer_kariki)
### Was able to use the model studio and xgboost to create a model using XGBoost, then made interpretable via