-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
89 lines (63 loc) · 2.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import argparse
import os
import time
import torch.nn as nn
import torch.utils.data
from torch.optim.lr_scheduler import StepLR
from torchvision import transforms
import DataSet
from gyroModel import GyroModel
from Opers import findLastCheckpoint, log, prepareLoaders, test, train
parser = argparse.ArgumentParser(description='PyTorch ConAutoEncoder')
parser.add_argument('--batch_size', default=2, type=int, help='batch size')
parser.add_argument('--normal_data', default='data/normal_images', type=str, help='path of train data')
parser.add_argument('--blurry_data', default='data/blurry_images', type=str, help='path of train data')
parser.add_argument('--epoch', default=5, type=int, help='number of train epoches')
parser.add_argument('--lr', default=1e-3, type=float, help='initial learning rate for Adam')
args = parser.parse_args()
data_transform = transforms.Compose([transforms.ToTensor()])
# The whole dataset
dataset = DataSet.imageDataset(args.normal_data, args.blurry_data, transform=data_transform)
# Spliting the dataset
train_loader, validation_loader = prepareLoaders(dataset, shuffle_dataset=True, batch_size=args.batch_size, )
# Saving directory
save_dir = os.path.join('models', args.model)
# Create the saving directory if not exists
if not os.path.exists(save_dir):
os.mkdir(save_dir)
# specifying the processing unit
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# initialize the NN
model = GyroModel().to(device)
# specify loss function
criterion = nn.MSELoss()
# specify the optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
# setting up a learning rate scheduler
scheduler = StepLR(optimizer, step_size=2, gamma=0.1)
# number of epochs to train the model
n_epochs = args.epoch
# check if there's a checkpoint
initial_epoch = findLastCheckpoint(save_dir)
if initial_epoch > 0:
print('resuming by loading epoch %03d' % initial_epoch)
model = torch.load(os.path.join(save_dir, 'model_%03d.pth' % initial_epoch))
for epoch in range(initial_epoch + 1, n_epochs + 1):
# monitor training loss
train_loss = 0.0
# Starting time
start_time = time.time()
# train the model #
train_loss = train(model, epoch, train_loader, criterion, optimizer, device)
# Calculating the training time
elapsed_time = time.time() - start_time
# print avg training statistics
train_loss = train_loss / len(train_loader)
# Printing some relevant logs
log('epoch = %4d , loss = %4.4f , time = %4.2f s' % (epoch, train_loss, elapsed_time))
# Saving the model
torch.save(model, os.path.join(save_dir, 'model_%03d.pth' % epoch))
# changing the learning rate for the next epoch
scheduler.step()
# Evaluate the model on the validation-set
test(model, validation_loader, criterion, device)