-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathformats_test.py
94 lines (84 loc) · 2.79 KB
/
formats_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for formats."""
from absl.testing import absltest
from absl.testing import parameterized
import jax.numpy as jnp
import numpy as np
import formats
class FormatsTest(parameterized.TestCase):
@parameterized.parameters([
dict(
selectors=[[
[[3], [1], [2]],
[[0], [4, 1, 2]],
]],
expected_rankings=np.array([[
[3, 1, 2, 0, 4],
[0, 4, 1, 2, 3],
]]),
expected_groups=np.array([[
[0, 1, 2, -1, -1],
[0, 1, 1, 1, -1],
]]),
num_classes=5,
),
])
def test_convert_selectors_to_rankings(self, selectors, expected_rankings,
expected_groups, num_classes):
rankings, groups = formats.convert_selectors_to_rankings(
selectors, num_classes)
np.testing.assert_array_almost_equal(rankings, expected_rankings)
np.testing.assert_array_almost_equal(groups, expected_groups)
def test_convert_prediction_sets_to_rankings(self):
conformity_scores = jnp.array([[0, 1, 2, 3], [3, 1, 0, 2]])
prediction_sets = jnp.array([
[0, 0, 0, 1],
[1, 0, 0, 1],
])
expected_rankings = jnp.array([
[3, 2, 1, 0],
[0, 3, 1, 2],
])
expected_groups = jnp.array([
[0, -1, -1, -1],
[0, 1, -1, -1],
])
rankings, groups = formats.convert_prediction_sets_to_rankings(
conformity_scores, prediction_sets
)
np.testing.assert_array_almost_equal(rankings, expected_rankings)
np.testing.assert_array_almost_equal(groups, expected_groups)
def test_convert_rankings_to_prediction_sets(self):
rankings = jnp.array([
[3, 2, 1, 0],
[0, 3, 1, 2],
])
groups = jnp.array([
[0, -1, -1, -1],
[0, 1, -1, -1],
])
expected_prediction_sets = jnp.array([
[0, 0, 0, 1],
[1, 0, 0, 1],
])
prediction_sets = formats.convert_rankings_to_prediction_sets(
rankings, groups
)
np.testing.assert_array_almost_equal(
prediction_sets, expected_prediction_sets
)
if __name__ == '__main__':
absltest.main()