-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
72 lines (61 loc) · 1.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from __future__ import annotations
import torch
import numpy as np
from calflops import calculate_flops
np.bool = bool
SYNAPSE_CLASS_COLOR_MAP = {
"aorta": (1, [30, 144, 255]),
"gallbladder": (2, [0, 255, 0]),
"left_kidney": (3, [255, 0, 0]),
"right_kidney": (4, [0, 255, 255]),
"liver": (5, [255, 0, 255]),
"pancreas": (6, [255, 255, 0]),
"spleen": (7, [128, 0, 255]),
"stomach": (8, [255, 128, 0])
}
ACDC_CLASS_COLOR_MAP = {
"RV": (1, [30, 144, 255]),
"Myo": (2, [0, 255, 0]),
"LV": (3, [255, 0, 0]),
}
CLASS_COLOR_MAPS = {
4: ACDC_CLASS_COLOR_MAP,
9: SYNAPSE_CLASS_COLOR_MAP
}
def dc(result: torch.Tensor, reference: torch.Tensor) -> float:
result = torch.atleast_1d(result.type(torch.bool))
reference = torch.atleast_1d(reference.type(torch.bool))
intersection = torch.count_nonzero(result & reference)
size_i1 = torch.count_nonzero(result)
size_i2 = torch.count_nonzero(reference)
try:
dc = (2. * intersection / float(size_i1 + size_i2)).item()
except ZeroDivisionError:
dc = 0.0
return dc
def calc_dice_gpu(pred: torch.Tensor, gt: torch.Tensor) -> float:
"""
input tensor shape:
pred: [[d,] h, w]; gt: [[d,] h, w]
"""
if pred.sum() > 0 and gt.sum() > 0:
return dc(pred, gt)
elif pred.sum() > 0 and gt.sum() == 0:
return 1
return 0
def print_flops_params(
model: torch.nn.Module,
input_shape: tuple[int, ...] = (1, 3, 224, 224),
output_as_string: bool = True,
output_precision: int = 4,
verbose: bool = True,
) -> None:
flops, macs, params = calculate_flops(
model=model,
input_shape=input_shape,
output_as_string=output_as_string,
output_precision=output_precision,
print_results=verbose,
print_detailed=verbose
)
print(f"FLOPs: {flops}, MACs: {macs}, Params: {params}")