-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvd.py
52 lines (48 loc) · 1.73 KB
/
svd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Power method of SVD algorithm.
"""
import numpy as np
epsilon = 1e-6
def svd_1d(matrix):
"""
SVD for 1 rank (with the greatest singular value).
"""
_, n = matrix.shape
#initializing random vector
eigenvector = np.random.normal(0, 1, (n))
eigenvector = eigenvector/(sum(x * x for x in eigenvector))**(1/2)
symmetric = matrix.T @ matrix
while True:
new_eigenvector = symmetric @ eigenvector
new_eigenvector = new_eigenvector / (sum(x * x for x in new_eigenvector))**(1/2)
if sum((x-y)**(2) for x, y in zip(eigenvector, new_eigenvector))**(1/2) < epsilon:
break
eigenvector = new_eigenvector
return eigenvector
def svd(matrix, k):
"""
Returns SVD for k ranks.
"""
m, n = matrix.shape
if k > min(m, n):
raise ValueError("k should be <= number of rows and number of columns")
computed_svd = []
computation_matrix = matrix.copy()
for i in range(k):
if i != 0:
computation_matrix -= computed_svd[i-1][0]*np.outer(computed_svd[i-1][1], (computed_svd[i-1][2]))
v = svd_1d(computation_matrix)
u = matrix@v
sigma = (sum(x * x for x in u))**(1/2)
u = u/sigma
computed_svd.append((sigma, u, v))
singular_values, us, vs = [np.array(x) for x in zip(*computed_svd)]
return singular_values, us.T, vs
if __name__ == "__main__":
matrix = np.array([[2, 0], [1, 2]], dtype='float64')
result = svd(matrix, 2)
u, s, v = np.linalg.svd(matrix, full_matrices=False)
values, left, rigth = svd(matrix, 2)
print(np.allclose(np.absolute(u), np.absolute(left)))
print(np.allclose(np.absolute(s), np.absolute(values)))
print(np.allclose(np.absolute(v), np.absolute(rigth)))