-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlink-cell-sheared.f
513 lines (387 loc) · 20.3 KB
/
link-cell-sheared.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
********************************************************************************
** FICHE F.32. CELL LINKED-LISTS IN SHEARED BOUNDARIES. **
** This FORTRAN code is intended to illustrate points made in the text. **
** To our knowledge it works correctly. However it is the responsibility of **
** the user to test it, if it is to be used in a research application. **
********************************************************************************
C *******************************************************************
C ** ROUTINES TO IMPLEMENT CELL LINKED-LISTS IN SHEARED BOUNDARIES.**
C ** **
C ** ROUTINES PROVIDED: **
C ** **
C ** SUBROUTINE MAPS **
C ** SETS UP MAP OF CELL NEIGHBOURS FOR BULK OF SIMULATION BOX **
C ** SUBROUTINE TOPMAP ( STRAIN ) **
C ** SETS UP MAP OF NEIGHBOURS FOR TOP LAYER OF CELLS **
C ** SUBROUTINE LINKS ( RCUT ) **
C ** CONSTRUCTS LINK-LIST GIVEN MAP OF CELL NEIGHBOURS **
C ** SUBROUTINE FORCE ( SIGMA, RCUT, STRAIN, V, W, WXY ) **
C ** CALCULATES FORCES, POTENTIAL, VIRIAL ETC. USING LIST **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF ATOMS **
C ** REAL RX(N),RY(N),RZ(N) ATOMIC POSITIONS **
C ** REAL VX(N),VY(N),VZ(N) ATOMIC VELOCITIES **
C ** REAL FX(N),FY(N),FZ(N) ATOMIC FORCES **
C ** **
C ** USAGE: **
C ** **
C ** SUBROUTINE MAPS IS CALLED ONCE AT THE START OF THE SIMULATION **
C ** TO DEFINE CELL NEIGHBOURS FOR ALL BUT THE TOP LAYER OF CELLS. **
C ** AT EACH TIME STEP, SUBROUTINE TOPMAP IS CALLED FOR THE TOP **
C ** LAYER, SUBROUTINE LINKS TO ESTABLISH THE ATOM NEIGHBOUR LIST, **
C ** AND THEN THE FORCE SUBROUTINE. **
C ** **
C ** UNITS: **
C ** **
C ** THE PROGRAM ASSUMES A BOX OF UNIT LENGTH AND TAKES THE **
C ** LENNARD-JONES POTENTIAL WITH UNIT WELL-DEPTH. **
C ** SUMMARY FOR BOX LENGTH L, ATOMIC MASS M, AND LENNARD-JONES **
C ** POTENTIAL PARAMETERS SIGMA AND EPSILON: **
C ** **
C ** OUR PROGRAM LENNARD-JONES SYSTEM **
C ** LENGTH L SIGMA **
C ** MASS M M **
C ** ENERGY EPSILON EPSILON **
C ** TIME SQRT(M*L**2/EPSILON) SQRT(M*SIGMA**2/EPSILON)**
C ** VELOCITY SQRT(EPSILON/M) SQRT(EPSILON/M) **
C ** PRESSURE EPSILON/L**3 EPSILON/SIGMA**3 **
C *******************************************************************
SUBROUTINE MAPS
COMMON / BLOCK2 / LIST, HEAD, MAP
C *******************************************************************
C ** CONSTRUCTS MAP OF CELL NEIGHBOURS. **
C ** **
C ** THIS SUBROUTINE SETS UP A LIST OF THE THIRTEEN NEIGHBOURING **
C ** CELLS OF EACH OF THE SMALL CELLS IN THE CENTRAL BOX. THE **
C ** EFFECTS OF THE PERIODIC BOUNDARY CONDITIONS ARE INCLUDED. **
C ** HOWEVER THE TOP LAYER (IY = M) IS TACKLED SEPARATELY BECAUSE **
C ** OF THE SHEARED BOUNDARY CONDITIONS, IN SUBROUTINE TOPMAP. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER M NUMBER OF CELLS IN EACH DIRECTION **
C ** INTEGER MAPSIZ SIZE OF CELL-CELL MAP **
C ** INTEGER MAP(MAPSIZ) LIST OF NEIGHBOURING CELLS **
C ** **
C ** USAGE: **
C ** **
C ** THE SUBROUTINE IS CALLED ONCE AT THE BEGINNING OF THE **
C ** SIMULATION AND THE MAP IS USED IN THE FORCE SUBROUTINE **
C *******************************************************************
INTEGER N, M, NCELL, MAPSIZ, M3
PARAMETER ( N = 1372 )
PARAMETER ( M = 5, NCELL = M * M * M, MAPSIZ = 16 * NCELL )
PARAMETER ( M3 = M * 3 )
INTEGER LIST(N), HEAD(NCELL), MAP(MAPSIZ)
INTEGER IX, IY, IZ, IMAP, ICELL
C *******************************************************************
C ** STATEMENT FUNCTION TO GIVE CELL INDEX **
ICELL ( IX, IY, IZ ) = 1 + MOD ( IX - 1 + M3, M )
: + MOD ( IY - 1 + M3, M ) * M
: + MOD ( IZ - 1 + M3, M ) * M * M
C ** FIND HALF THE NEAREST NEIGHBOURS OF EACH CELL **
DO 50 IZ = 1, M
DO 40 IY = 1, M - 1
DO 30 IX = 1, M
IMAP = ( ICELL ( IX, IY, IZ ) - 1 ) * 16
MAP( IMAP + 1 ) = ICELL ( IX + 1, IY , IZ )
MAP( IMAP + 2 ) = ICELL ( IX + 1, IY + 1, IZ )
MAP( IMAP + 3 ) = ICELL ( IX , IY + 1, IZ )
MAP( IMAP + 4 ) = ICELL ( IX - 1, IY + 1, IZ )
MAP( IMAP + 5 ) = ICELL ( IX + 1, IY , IZ - 1 )
MAP( IMAP + 6 ) = ICELL ( IX + 1, IY + 1, IZ - 1 )
MAP( IMAP + 7 ) = ICELL ( IX , IY + 1, IZ - 1 )
MAP( IMAP + 8 ) = ICELL ( IX - 1, IY + 1, IZ - 1 )
MAP( IMAP + 9 ) = ICELL ( IX + 1, IY , IZ + 1 )
MAP( IMAP + 10 ) = ICELL ( IX + 1, IY + 1, IZ + 1 )
MAP( IMAP + 11 ) = ICELL ( IX , IY + 1, IZ + 1 )
MAP( IMAP + 12 ) = ICELL ( IX - 1, IY + 1, IZ + 1 )
MAP( IMAP + 13 ) = ICELL ( IX , IY , IZ + 1 )
MAP( IMAP + 14 ) = 0
MAP( IMAP + 15 ) = 0
MAP( IMAP + 16 ) = 0
30 CONTINUE
40 CONTINUE
50 CONTINUE
RETURN
END
SUBROUTINE TOPMAP ( STRAIN )
COMMON / BLOCK2 / LIST, HEAD, MAP
C *******************************************************************
C ** CALCULATES CELL NEIGHBOUR MAP FOR TOP LAYER. **
C ** **
C ** THIS SUBROUTINE SUPPLEMENTS THE LIST OF NEIGHBOURING CELLS **
C ** FOR THE TOP LAYER (IY = M) WITH SHEARED BOUNDARY CONDITIONS **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER M NUMBER OF CELLS IN EACH DIRECTION **
C ** INTEGER MAPSIZ SIZE OF CELL-CELL MAP **
C ** INTEGER MAP(MAPSIZ) LIST OF NEIGHBOURING CELLS **
C ** REAL STRAIN THE X-DISPLACEMENT OF NEXT BOX UP **
C ** **
C ** USAGE: **
C ** **
C ** THE SUBROUTINE IS CALLED AT EVERY TIMESTEP IN THE SIMULATION **
C ** JUST BEFORE THE FORCE SUBROUTINE **
C *******************************************************************
INTEGER N, M, NCELL, MAPSIZ, M3
PARAMETER ( N = 1372 )
PARAMETER ( M = 5, NCELL = M * M * M, MAPSIZ = 16 * NCELL )
PARAMETER ( M3 = M * 3 )
REAL STRAIN
INTEGER LIST(N), HEAD(NCELL), MAP(MAPSIZ)
INTEGER IX, IY, IZ, IMAP, ICELL, IIX
C *******************************************************************
C ** STATEMENT FUNCTION TO GIVE CELL INDEX **
ICELL ( IX, IY, IZ ) = 1 + MOD ( IX - 1 + M3, M )
: + MOD ( IY - 1 + M3, M ) * M
: + MOD ( IZ - 1 + M3, M ) * M * M
C ** CALCULATE X OFFSET IN CELL LENGTHS WHERE STRAIN **
C ** IS BETWEEN -1/2 AND +1/2 AND BOX LENGTH = 1.0 **
C ** ADDING 1.0 SIMPLY GUARANTEES A POSITIVE RESULT **
STRAIN = STRAIN - ANINT ( STRAIN )
IIX = INT ( ( STRAIN + 1.0 ) * REAL ( M ) )
C ** FIND HALF THE NEAREST NEIGHBOURS OF EACH CELL **
IY = M
DO 50 IZ = 1, M
DO 30 IX = 1, M
IMAP = ( ICELL ( IX, IY, IZ ) - 1 ) * 16
MAP( IMAP + 1 ) = ICELL ( IX + 1 , IY , IZ )
MAP( IMAP + 2 ) = ICELL ( IX + 1 - IIX, IY + 1, IZ )
MAP( IMAP + 3 ) = ICELL ( IX - IIX, IY + 1, IZ )
MAP( IMAP + 4 ) = ICELL ( IX - 1 - IIX, IY + 1, IZ )
MAP( IMAP + 5 ) = ICELL ( IX + 1 , IY , IZ - 1 )
MAP( IMAP + 6 ) = ICELL ( IX + 1 - IIX, IY + 1, IZ - 1 )
MAP( IMAP + 7 ) = ICELL ( IX - IIX, IY + 1, IZ - 1 )
MAP( IMAP + 8 ) = ICELL ( IX - 1 - IIX, IY + 1, IZ - 1 )
MAP( IMAP + 9 ) = ICELL ( IX + 1 , IY , IZ + 1 )
MAP( IMAP + 10 ) = ICELL ( IX + 1 - IIX, IY + 1, IZ + 1 )
MAP( IMAP + 11 ) = ICELL ( IX - IIX, IY + 1, IZ + 1 )
MAP( IMAP + 12 ) = ICELL ( IX - 1 - IIX, IY + 1, IZ + 1 )
MAP( IMAP + 13 ) = ICELL ( IX , IY , IZ + 1 )
MAP( IMAP + 14 ) = ICELL ( IX - 2 - IIX, IY + 1, IZ )
MAP( IMAP + 15 ) = ICELL ( IX - 2 - IIX, IY + 1, IZ - 1 )
MAP( IMAP + 16 ) = ICELL ( IX - 2 - IIX, IY + 1, IZ + 1 )
30 CONTINUE
50 CONTINUE
RETURN
END
SUBROUTINE LINKS ( RCUT )
COMMON / BLOCK1 / RX, RY, RZ, VX, VY, VZ, FX, FY, FZ
COMMON / BLOCK2 / LIST, HEAD, MAP
C *******************************************************************
C ** SUBROUTINE TO SET UP LINKED LIST AND THE HEAD OF CHAIN ARRAYS **
C ** **
C ** EACH ATOM IS SORTED INTO ONE OF THE M**3 SMALL CELLS. **
C ** THE FIRST ATOM IN EACH CELL IS PLACED IN THE HEAD ARRAY. **
C ** SUBSEQUENT ATOMS ARE PLACED IN THE LINKED LIST ARRAY. **
C ** ATOM COORDINATES ARE ASSUMED TO BE BETWEEN -0.5 AND +0.5. **
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF ATOMS **
C ** INTEGER M NUMBER OF CELLS IN EACH DIRECTION **
C ** INTEGER NCELL TOTAL NUMBER OF CELLS (M**3) **
C ** INTEGER LIST(N) LINKED LIST OF ATOMS **
C ** INTEGER HEAD(NCELL) HEAD OF CHAIN FOR EACH CELL **
C ** REAL RX(N),RY(N),RZ(N) POSITIONS **
C ** REAL RCUT THE CUTOFF DISTANCE FOR THE FORCE **
C ** **
C ** USAGE: **
C ** **
C ** THE ROUTINE IS CALLED EVERY TIMESTEP BEFORE THE FORCE ROUTINE.**
C *******************************************************************
INTEGER N, M, NCELL, MAPSIZ
PARAMETER ( N = 1372 )
PARAMETER ( M = 5, NCELL = M * M * M, MAPSIZ = 16 * NCELL )
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL FX(N), FY(N), FZ(N)
INTEGER HEAD(NCELL), LIST(N), MAP(MAPSIZ)
REAL CELLI, RCUT, CELL
INTEGER ICELL, I
C *******************************************************************
C ** ZERO HEAD OF CHAIN ARRAY **
DO 10 ICELL = 1, NCELL
HEAD(ICELL) = 0
10 CONTINUE
CELLI = REAL ( M )
CELL = 1.0 / CELLI
IF ( CELL. LT. RCUT ) THEN
WRITE(*,'('' CELL SIZE TOO SMALL FOR CUTOFF '')')
STOP
ENDIF
C ** SORT ALL ATOMS **
DO 20 I = 1, N
ICELL = 1 + INT ( ( RX(I) + 0.5 ) * CELLI )
: + INT ( ( RY(I) + 0.5 ) * CELLI ) * M
: + INT ( ( RZ(I) + 0.5 ) * CELLI ) * M * M
LIST(I) = HEAD(ICELL)
HEAD(ICELL) = I
20 CONTINUE
RETURN
END
SUBROUTINE FORCE ( SIGMA, RCUT, STRAIN, V, W, WXY )
COMMON / BLOCK1 / RX, RY, RZ, VX, VY, VZ, FX, FY, FZ
COMMON / BLOCK2 / LIST, HEAD, MAP
C *******************************************************************
C ** COMPUTES FORCES, ETC. USING A LINK LIST IN SHEARED BOUNDARIES.**
C ** **
C ** PRINCIPAL VARIABLES: **
C ** **
C ** INTEGER N NUMBER OF ATOMS **
C ** INTEGER M NUMBER OF CELLS IN EACH DIRECTION **
C ** INTEGER NCELL NUMBER OF SMALL CELLS (M**3) **
C ** INTEGER MAPSIZ SIZE OF CELL-CELL MAP **
C ** INTEGER LIST(N) THE LINKED LIST **
C ** INTEGER HEAD(NCELL) THE HEAD OF CHAIN ARRAY **
C ** INTEGER MAP(MAPSIZ) LIST OF NEIGHBOURING CELLS **
C ** REAL RX(N),RY(N),RZ(N) POSITIONS **
C ** REAL FX(N),FY(N),FZ(N) FORCES **
C ** REAL SIGMA THE LJ LENGTH PARAMETER **
C ** REAL RCUT THE CUT-OFF DISTANCE **
C ** REAL STRAIN X OFFSET OF SUCCESSIVE BOXES **
C ** REAL V THE POTENTIAL ENERGY **
C ** **
C ** USAGE: **
C ** **
C ** FORCE IS CALLED IN AN MD PROGRAM TO CALCULATE THE FORCE ON **
C ** EACH ATOM. THE ROUTINE IS WRITTEN FOR A LIQUID OF LENNARD **
C ** JONES ATOMS. SUBROUTINE FORCE REQUIRES A LINKED LIST SET UP **
C ** USING SUBROUTINE LINKS AND THE MAP OF THE SMALL CELLS SET UP **
C ** USING SUBROUTINES MAPS AND TOPMAP. **
C *******************************************************************
INTEGER N, M, NCELL, MAPSIZ
PARAMETER ( N = 1372 )
PARAMETER ( M = 5, NCELL = M * M * M, MAPSIZ = 16 * NCELL )
REAL RX(N), RY(N), RZ(N)
REAL VX(N), VY(N), VZ(N)
REAL FX(N), FY(N), FZ(N)
INTEGER HEAD(NCELL), LIST(N), MAP(MAPSIZ)
REAL RCUT, SIGMA, STRAIN, V, W, WXY
REAL RXI, RYI, RZI, FXIJ, FYIJ, FZIJ, RCUTSQ
REAL VIJ, WIJ, FIJ
REAL SIGSQ, FXI, FYI, FZI, SR2, SR6, SR12
REAL RIJSQ, RXIJ, RYIJ, RZIJ, CORY
INTEGER ICELL, JCELL0, JCELL, I, J, NABOR
C *******************************************************************
SIGSQ = SIGMA ** 2
RCUTSQ = RCUT ** 2
C ** ZERO FORCES AND POTENTIAL **
DO 10 I = 1, N
FX(I) = 0.0
FY(I) = 0.0
FZ(I) = 0.0
10 CONTINUE
V = 0.0
W = 0.0
WXY = 0.0
C ** LOOP OVER ALL CELLS **
DO 5000 ICELL = 1, NCELL
I = HEAD(ICELL)
C ** LOOP OVER ALL MOLECULES IN THE CELL **
1000 IF ( I .GT. 0 ) THEN
RXI = RX(I)
RYI = RY(I)
RZI = RZ(I)
FXI = FX(I)
FYI = FY(I)
FZI = FZ(I)
C ** LOOP OVER ALL MOLECULES BELOW I IN THE CURRENT CELL **
J = LIST(I)
2000 IF ( J .GT. 0 ) THEN
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)
CORY = ANINT ( RYIJ )
RXIJ = RXIJ - CORY * STRAIN
RXIJ = RXIJ - ANINT ( RXIJ )
RYIJ = RYIJ - CORY
RZIJ = RZIJ - ANINT ( RZIJ )
RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ
IF ( RIJSQ .LT. RCUTSQ ) THEN
SR2 = SIGSQ / RIJSQ
SR6 = SR2 * SR2 * SR2
SR12 = SR6 ** 2
VIJ = SR12 - SR6
V = V + VIJ
WIJ = VIJ + SR12
W = W + WIJ
FIJ = WIJ / RIJSQ
FXIJ = FIJ * RXIJ
FYIJ = FIJ * RYIJ
FZIJ = FIJ * RZIJ
FXI = FXI + FXIJ
FYI = FYI + FYIJ
FZI = FZI + FZIJ
FX(J) = FX(J) - FXIJ
FY(J) = FY(J) - FYIJ
FZ(J) = FZ(J) - FZIJ
WXY = WXY + RXIJ * FYIJ
ENDIF
J = LIST(J)
GOTO 2000
ENDIF
C ** LOOP OVER NEIGHBOURING CELLS **
JCELL0 = 16 * ( ICELL - 1 )
DO 4000 NABOR = 1, 16
JCELL = MAP( JCELL0 + NABOR )
IF ( JCELL .GT. 0 ) THEN
C ** LOOP OVER ALL MOLECULES IN NEIGHBOURING CELLS **
J = HEAD(JCELL)
3000 IF ( J .NE. 0 ) THEN
RXIJ = RXI - RX(J)
RYIJ = RYI - RY(J)
RZIJ = RZI - RZ(J)
CORY = ANINT ( RYIJ )
RXIJ = RXIJ - CORY * STRAIN
RXIJ = RXIJ - ANINT ( RXIJ )
RYIJ = RYIJ - CORY
RZIJ = RZIJ - ANINT ( RZIJ )
RIJSQ = RXIJ * RXIJ + RYIJ * RYIJ + RZIJ * RZIJ
IF ( RIJSQ. LT. RCUTSQ ) THEN
SR2 = SIGSQ / RIJSQ
SR6 = SR2 * SR2 * SR2
SR12 = SR6 ** 2
VIJ = SR12 - SR6
V = V + VIJ
WIJ = VIJ + SR12
W = W + WIJ
FIJ = WIJ / RIJSQ
FXIJ = FIJ * RXIJ
FYIJ = FIJ * RYIJ
FZIJ = FIJ * RZIJ
FXI = FXI + FXIJ
FYI = FYI + FYIJ
FZI = FZI + FZIJ
FX(J) = FX(J) - FXIJ
FY(J) = FY(J) - FYIJ
FZ(J) = FZ(J) - FZIJ
WXY = WXY + RXIJ * FYIJ
ENDIF
J = LIST(J)
GOTO 3000
ENDIF
ENDIF
4000 CONTINUE
FX(I) = FXI
FY(I) = FYI
FZ(I) = FZI
I = LIST(I)
GOTO 1000
ENDIF
5000 CONTINUE
C ** INCORPORATE ENERGY FACTORS **
DO 6000 I = 1, N
FX(I) = FX(I) * 24.0
FY(I) = FY(I) * 24.0
FZ(I) = FZ(I) * 24.0
6000 CONTINUE
V = V * 4.0
W = W * 24.0 / 3.0
WXY = WXY * 24.0
RETURN
END